
Smooth trajectories in straight line mazes

Yves Bertot
Joint work with Thomas Portet, Quentin Vermande

April 2023

1 / 33



The game

I Find a smooth path in a maze
I Decompose the problem

I Find a discrete approximation of the problem
I Construct a broken line (non-smooth path)
I smoothen the angles

I Prove the correctness of the algorithm
I Prove the absence of collision
I work in progress
I Ideally one should also prove that a path is found as soon as

one exists

2 / 33



Example

s

t

3 / 33



Cell decomposition

I Decompose the space into simple cells

I Each cell is convex

I Each cell is free of obstacles

I Each cell may have neighbours where moving is safe

4 / 33



Vertical cell decomposition

I Use a vertical sweep line moving left to right

I Stop each time one meets an edge tip (an event)
I maintain a vertically ordered sequence of open cells

I close all open cells in contact with the event
I open new cells forall edges starting at this event

I Simplifying assumptions
I No vertical edges
I Edges do not cross

5 / 33



Intermediate position for vertical cell decomposition (1)

6 / 33



Intermediate position for vertical cell decomposition (2)

7 / 33



Difficulty with vertically aligned events

I Closed cells may be degenerate
I Left and right side are in contact

I Solution: special treatment
I Add points to the right side of last closed cell
I Add points to the left side of last opened cell

8 / 33



Vertical cell decomposition example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

9 / 33



Cell assumptions

I Vertical edges are safe passages between two cells
I Moving directly left-edge right-edge is safe

I and vice-versa

I Moving from a left-edge to the cell center is safe
I similarly for a right-edge
I moving from left-edge to left-edge is safe by going through the

cell center

10 / 33



Finding a path in the cell graph

I A discrete path from cell to cell is found by breadth-first
search

I Connected components of the graph are defined by polygons

I Special care for points that are already on the common edge
of two cells

11 / 33



Two examples of elementary safe paths

0

1

2

3

4

5

6

7

8

9

10

11

12

13

12 / 33



Making a broken line path between points

I Find the cells containg the points

I Find a discrete path between cell names

I Make a path from vertical edge midpoint to vertical edge
midpoint

I Connect the source and target point to the first and last
vertical edge midpoints
I Unless the source or targets are themselves on a vertical edge

13 / 33



broken line safe path between points

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 / 33



Making corners smooth

I Angles would require a robot to stop to turn

I rounded bends makes it possible to keep moving

I First approximation: no limit on steering radius

I Using quadratic Bezier curves for this purpose

15 / 33



The basics of quadratic Bézier curves

I Bezier curves are given by a set of control points (3 for a
quadratic curve)

I Points on the curves are obtained by computing weighted
barycenters
I The curve is enclosed in the convex hull of the control points

I Given control points a0, a1, . . . , an−1, an, a0, a1 is tangent to
the curve in a0
I same for an−1, an in an

16 / 33



Bezier curve illustration

I Straight edge tips of this drawing are control points

I The curve is inside the triangle

17 / 33



Plotting the Bezier curve

I Show how the point for ratio 4/9 is computed

I Control points for the two subcurves are given by the new
point, the initial starting and end points, and the solid green
straight edge tip

18 / 33



Using Bezier curves for smoothing

I Add extra points in the middle of each straight line segment

I Uses these extra points as first and last control points for
Bezier curves

I Use the angle point as the middle control point

I Check the Bezier curve for collision and repair if need be

19 / 33



Checking for collision

I Two kinds of angles
I Angles at cell center: in the middle of safe space

I No risk of collision

I angles at vertical edge midpoint
I Use dichotomy until a guaranteed result is obtained
I To compute control points in dichotomy, only half sums are

needed

20 / 33



Collision checking, graphically

21 / 33



Not passing in the safe zone

22 / 33



Repairing a faulty curve

I Simple solution: bring the control points closer to the corner

I Use the first half points computed in the checking phase

I Check and repair again recursively, if need be

23 / 33



Constructing a repaired curve

24 / 33



Checking the repaired curve

I The one-triangle convex hull is given by the dashed line

I It does not make it possible to conclude

I After dichotomy, the solid lines do

25 / 33



Final trajectories

0

1

2

3

4

5

6

7

8

9

10

11

12

13

26 / 33



Final trajectories

0

1

2

3

4

5

6

7

8

9

10

11

12

13

27 / 33



Final trajectories: repaired curve example

0

1

2

3

4

5

6

7

8

28 / 33



Proof tools

I Breadth first search (recent development)
I Convex hulls (Pichardie & B. 2001)

I Orientation predicate
I Collision between two segments (recent development)

I Convex spaces and Bezier Curve
I Internship by Q. Vermande
I Using infotheo, especially convex and conical spaces (Affeldt

& Garrigue & Saikawa 2020)

I Bernstein Polynomials (B. & Guilhot & Mahboubi, 2010,
Zsido 2013)

29 / 33



Key proof features

I Replaced absence collision by guarantees to travel inside a
safe subset
I interior of cells (2-dimensional subsets)
I interior of doors (1-dimensional subsets)

I Safe paths from cell centers to all doors to other cells
I Safe path from any door on the left side to a door on the

right side of a cell
I This requires cells to have distinct left and right sides

I Bezier curves that cross doors are monotonic in the first
coordinate
I It is enough to prove that the door is passed correctly

I work in progress

30 / 33



Two uses of dichotomy

I In the algorithm, dichotomy at midpoints
I Obtain triangles that hug the curve close enough
I Obtain guarantee that any intersection with the vertical line is

within the door
I Does not obtain unicity

I In the proof, dichotomy at the exact value
I Proves that the door is passed only once

31 / 33



Cell properties

I Two edges for the low and high side
I These edges do not cross

I Two sequences of points for the left and right side
I Non-empty
I Vertically aligned points,
I Sorted with respect to their second coordinates
I First and last point must be on low and high edges

I Left and right side must be at distinct first coordinate

32 / 33



Further work

I This is proof-of-concept, not satisfactory for practical use
I Path from middle of door to middle of door is too naive
I Bezier Curve do not guarantee pleasant dynamics

I Should consider Clothoids
I Should improve Coq to facilitate plotting parameterized

curves
I Current approach by generating postcript programs from

algorithm data
I Rely on Postscript’s Bezier curves (slides 14, 26, 27, 28)

33 / 33


