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Solving the RSA partial factorization problem

Given a 2048-bit RSA modulus N = pq and 512 most significant bits of p, factor N.

Previous results*:

470 core-hours

Our results:

~18 core-hours

*from [AHMP23], https://eprint.iacr.org/2023/329



Solving the Gentry-Halevi FHE problem

Given a public key for the Gentry-Halevi FHE scheme, recover the private key.

Previous results (toy/small/medium)*:

24 core-days/15.7 core-years/

68582 core-years

Our results: 

15 core-minutes/31 core-hours/

6.4 core-years

*from [PSZ15], https://doi.org/10.1007/s10623-014-9957-1



Talk Outline

● What is lattice reduction?
○ Geometric intuition for lattices
○ Profile-based intuition for reduction

● How do we improve lattice reduction from [LLL82]?
○ Recursion [KS01, NS16, KEF21]
○ Floating-point numbers [NS09, KEF21]

● How do we merge both strategies?
○ Basis compression [SMSV14] and profile drop
○ Algorithm runtime analysis

● Results



What is Lattice Reduction?











Geometric and Computational Interpretation

● Lattices are mathematical objects represented by a basis matrix.
● Many cryptanalytic problems can be solved using lattices:

○ Find an integer linear combination of polynomials with small coefficients -> Determine a short 
vector in a lattice

○ Decrypt an FHE ciphertext -> Find distance to the closest lattice point
● Our ability to solve the lattice problem depends on the quality of the basis



Good vs. Bad Bases

Does the lattice generated by this basis include a vector within the green circle?
Unclear.



Good vs. Bad Bases

Does the lattice generated by this basis include a vector within the green circle?
No.



Good vs. Bad Bases



Good vs. Bad Bases



Good vs. Bad Bases



Good vs. Bad Bases



Lattice Reduction

● A lattice reduction algorithm takes a lattice basis as input and returns a “good” 
basis of the same lattice.

● “Good” can mean many things, but one definition is the Lovász condition:

● Intuitively,
○ Large decreases in the profile are disallowed
○ Small decreases or large increases in the profile are OK



Input and Output bases



[LLL82] lattice reduction algorithm



Improving Lattice Reduction



Problems with [LLL82]

● Polynomial time in dimension and bitsize of entries:

 

● Hard to reduce larger than dimension 20
● Computing the Gram-Schmidt orthogonalization is expensive

○ Number of times the GSO is updated:
○ Number of arithmetic operations per update:
○ Bit sizes of rational numbers in the GSO:



● Polynomial time in dimension and bitsize of entries:

 

● Hard to reduce larger than dimension 20
● Computing the Gram-Schmidt orthogonalization is expensive

○ Number of times the GSO is updated:
○ Number of arithmetic operations per update:
○ Bit sizes of rational numbers in the GSO:

Problems with [LLL82]

Recursion

Precision



Recursive Approach: [KS01, NS16]

● Use upper-triangular GSO to describe projected sublattices

● Recursively reduce projected sublattices
● “Batches” updates to GSO, so fewer updates at large dimension
● [NS16] has best proven running time 

○ Number of arithmetic operations to update GSO
○ Bit sizes of entries in the GSO

● Output may not satisfy the Lovász condition



[NS16] lattice reduction algorithm



Recursive Approach

We can apply the recursive approach when we have fully computed the GSO



Precision Management [NS09,KEF21]

● Instead of updating the GSO during recursive reduction, we can compute the 
GSO with lower precision

● How much precision is needed?



















Precision Management [NS09]

● We can round the exact representation without distorting the geometric 
properties too much.

● If we round too aggressively, the algorithm is unstable.
● [NS09] ensures stability by only computing the prefix of the GSO that already 

satisfies the Lovász condition
● Precision depends on the length of the prefix

○ Double precision fine up to dimension 170 [S09]
● [NS09] has proven running time 

○ Number of rounds to update GSO
○ Bit cost to update GSO



[NS09] lattice reduction algorithm



Precision Management [NS09]

● Computing the GSO is significantly faster in practice
● Used by FPLLL for bases of dimension ~300
● Incompatible with recursion, because GSO is only partially known



Precision+Recursion in [KEF21]

● Bits of precision depends on the vertical “spread” of the profile
● Recursive reduction heuristically decreases the spread exponentially quickly

● Use fast matrix operations to update floating-point GSO
● Cost per update:
● Total cost:

Spread: 200 bits Spread: 111 bits



[KEF21] lattice reduction algorithm



The heuristic assumption of [KEF21]
is wrong.



[KEF21] counterexample: NTRU bases

Spread: 200 bits Spread: 198 bits

The spread might never decrease, so we can’t rely on updates to 
the GSO to get less expensive over time.



[KEF21] counterexample: NTRU bases

Spread: 200 bits Spread: 200 bits

Special structure in the lattice can violate the heuristic assumption, 
so more bits are needed than predicted for stability.



[SMSV14] compression

When we have a sparse projected sublattice orthogonal to a dense sublattice, we 
can scale down the projected sublattice without affecting lattice reduction.

Equivalently, when we have a large, sustained increase in the profile, we can shift 
the right side down to be closer to the left side.



[SMSV14] compression



[SMSV14] compression



Our improvements to [SMSV14] compression

● We use the scaling technique to decrease the spread while maintaining 
necessary lattice geometry.

● Smaller spread means fewer bits of precision are necessary
● Unlike [SMSV14], we compress repeatedly, so we need to show stability.
● We define the drop as the spread of the compressed basis.
● Bounded drop is just as good as the Lovász condition

○ Small drop means no large decreases in the profile
○ Prove equivalent properties based on this condition
○ More compatible with recursive structure



Spread vs. drop of NTRU bases

Spread: 200 bits Spread: 198 bits

After lattice reduction, the spread of the lattice basis is large, but the 
drop is small.



After lattice reduction, the spread of the lattice basis is large, but the 
drop is small.

Spread vs. drop of NTRU bases

Drop: 200 bits Drop: 10 bits
Spread: 200 bits Spread: 198 bits



Running time

● Following [KEF21], can we prove that the drop decreases exponentially 
quickly with every round of recursive reduction?

Drop: 200 bits Drop: 200 bits

No.



Running time

● Following [LLL82], can we prove that the decrease in potential is proportional 
to the working precision in every round?

Drop: 200 bits Drop: 0 bits

No.



Running time

● Can we prove that in every round, one of the two is true?
○ Either the decrease in drop is large, so future GSO updates require fewer bits of precision,
○ Or the decrease in potential is large, so we are significantly closer to being reduced.

● Cost per update:
● Total cost**:

Yes*.

*depends on heuristic assumptions about the final rounds
**for well-conditioned bases, typical in cryptanalysis



Additional Results



Solving the RSA partial factorization problem

Given a 2048-bit RSA modulus N = pq and 512 most significant bits of p, factor N.

Previous results*:

470 core-hours

Our results:

~18 core-hours

*from [AHMP23], https://eprint.iacr.org/2023/329



Solving the Gentry-Halevi FHE problem

Given a public key for the Gentry-Halevi FHE scheme, recover the private key.

Previous results (toy/small)*:

24 core-days/15.7 core-years

Our results: 

15 core-minutes/31 core-hours

*from [PSZ15], https://doi.org/10.1007/s10623-014-9957-1



Additional Results - RSA Partial Factorization



Additional Results - Random q-ary bases



Additional Results - Gentry-Halevi FHE



Summary

● Lattice reduction is an important tool for cryptanalysis
● Algorithms can be improved via recursion or precision management
● [KEF21] found a way to combine both, but it doesn’t work for all lattices.
● We use the drop instead of the spread to keep the precision small.
● Our code is significantly faster than state-of-the-art implementations.
● Future work may include making our algorithm rigorous or decreasing the 

running time even further.



Questions?

ia.cr/2023/237 https://github.com/keeganryan/flatter
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