PARI/GP, playing the L-functions game of number theorists

Aurel Page

RTCA, ENS Lyon Inria / Université de Bordeaux

27/06/2023

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Riemann zeta function

$$\zeta(\boldsymbol{s}) = \sum_{n \ge 1} \frac{1}{n^s} \text{ for } \Re(\boldsymbol{s}) > 1.$$

Important properties:

- Euler product: $\zeta(s) = \prod_{p} (1 p^{-s})^{-1};$
- Meromorphic continuation to \mathbb{C} , simple pole at s = 1;

Functional equation: Λ(s) = Γ_ℝ(s)ζ(s) satisfies Λ(s) = Λ(1 − s);

where $\Gamma_{\mathbb{R}}(s) = \pi^{s/2} \Gamma(s/2)$.

L-functions

An **L-function** L(s) of degree *d* and conductor *N* (integers \geq 1) is a series

$$L(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$
 converging for $\Re(s)$ large enough

satisfying the properties:

- Euler product: L(s) = ∏_p F_p(p^{-s})⁻¹ where F_p(x) ∈ C[x] satisfies F_p(0) = 1, and for p ∦ N all roots of F_p have absolute value 1 and deg F_p = d;
- Meromorphic continuation to C, finite number of poles;
- Functional equation: $\Lambda(s) = N^{s/2} \prod_{i=1}^{d} \Gamma_{\mathbb{R}}(s + \alpha_i) L(s)$ satisfies $\Lambda(s) = \epsilon \overline{\Lambda(1 - \overline{s})}$.

Note: sometimes we make a shift, so the functional equation relates *s* to some k - s.

Example: elliptic curve

Consider the curve

$$E: y^2 + y = x^3 + x^2 - 2x.$$

For each prime *p*, let $a_p = p - n_p$ where n_p is the number of solutions mod *p* and define

$$F_{\rho}(x)=1-a_{\rho}x+\rho x^{2}.$$

Then $\prod_{p} F_{p}(p^{-s})^{-1}$ can be modified at finitely many primes into an L-function L(E, s) such that

(日) (日) (日) (日) (日) (日) (日)

- ► *d* = 2,
- ► *N* = 389,
- $(\alpha_1, \alpha_2) = (0, 1).$

The number theorists game

- 1. For various arithmetic objects X, construct an L-function L(X, s).
- 2. Find equalities $L(X_1, s) = L(X_2, s)$ for seemingly unrelated X_1 and X_2 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

It even has a name: the "Langlands programme"!

The number theorists game

More precisely, you are supposed to match "motivic" L-functions and "automorphic" L-functions.

Motivic:

- Consider polynomial equations;
- Build $F_p(x)$ from mod p point counts.

Automorphic:

- Consider (finite-dimensional) spaces of automorphic forms: functions satisfying some functional equations + some differential equations;
- Build F_p(x) from the eigenvalues of some operators (Hecke operators).

Example: modular forms

To match our motivic L-function L(E, s), we need an automorphic object: a modular form *f*.

- $\blacktriangleright f: \mathbb{C} \setminus \mathbb{R} \to \mathbb{C};$
- Functional equations: f(^{az+b}/_{cz+d}) = (cz + d)²f(z) for every (^{a b}/_{c d}) in some subgroup Γ ⊂ GL₂(ℤ);

(日) (日) (日) (日) (日) (日) (日)

- Differential equations: f is holomorphic.
- Eigenvalue of Hecke operators: $T_p f = a_p f$ gives $F_p(x) = 1 - a_p x + px^2$.

Dedekind zeta function

Consider $P(x) \in \mathbb{Z}[x]$ irreducible of degree *d*. For each prime *p*, let

$$F_p(x) = \prod_{j=1}^s (1-x^{d_j})$$

where (d_1, \ldots, d_s) are the degrees of the irreducible factors of $P \mod p$.

After modifying finitely many F_p , this gives an L-function $\zeta_K(s)$ (where $K = \mathbb{Q}(\alpha)$ with $P(\alpha) = 0$) with

degree d,

• N = the absolute value of the discriminant of K,

$$\blacktriangleright \alpha_1 = \cdots = \alpha_d = \mathbf{0}.$$

Dirichlet characters

We will describe automorphic objects matching Dedekind zeta functions in some simple cases.

Let $N \ge 1$ be an integer and $\chi \colon (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ a character. Set

 $F_{p}(x) = 1 - \chi(p)x$ for all but finitely many p.

A D F A 同 F A E F A E F A Q A

These are the Euler factors of an L-function $L(\chi, s)$.

For suitable *K*, we have $\zeta_{K}(s) = \prod_{k} L(\chi_{k}, s)$ for some χ_{k} .

Ray class groups

We can also play the game in reverse!

Let $K = \mathbb{Q}(\alpha)$ be a number field with ring of algebraic integers \mathbb{Z}_K . We want an analogue of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ for K. Define the **ray class group**

 $Cl_{\mathcal{K}}(N) = \frac{\{\text{ideals of } \mathbb{Z}_{\mathcal{K}} \text{ coprime to } N\}}{\{\text{ideals generated by some } \beta \equiv 1 \mod N\}}.$

For every character χ : $Cl_{\mathcal{K}}(N) \to \mathbb{C}^{\times}$, we get an L-function $L(\chi, s)$.

There exists a number field *H* (a **class field**) such that $\zeta_H(s) = \prod_{\chi} L(\chi, s)$.

Hecke characters

Let $K = \mathbb{Q}(\alpha)$ be a number field with ring of algebraic integers \mathbb{Z}_K , where $P(\alpha) = 0$. Let r_1 be the number of real roots of P and r_2 the number of pairs of conjugate complex roots. Let's upgrade the previous construction and define the **idèle class group**

$$\mathcal{C}_{\mathcal{K}}(N) = \frac{(\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2} \times \{\text{ideals of } \mathbb{Z}_{\mathcal{K}} \text{ coprime to } N\}}{\{\text{elements } \beta \equiv 1 \text{ mod } N\}}$$

(日) (日) (日) (日) (日) (日) (日)

For every continuous character $\chi : C_{\mathcal{K}}(N) \to \mathbb{C}^{\times}$, we get an L-function $L(\chi, s)$.

Example: a genus 2 curve

We consider $P(x) = x^4 - x^3 + 2x^2 + 4x + 3$ and a specific infinite order Hecke character χ .

Corresponding motivic object? The curve

$$C: y^2 + x^3y = -2x^4 - 2x^3 + 2x^2 + 3x - 2$$

has an attached L-function L(C, s), and we have

$$L(\chi, \boldsymbol{s}) = L(\boldsymbol{C}, \boldsymbol{s}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Transcendental Hecke characters

Sometimes we fail at the game!

Some Hecke characters (transcendental) cannot correspond to a motivic object.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In PARI/GP, the Hecke characters package broke the L-functions package!

- large α_i
- \blacktriangleright nonreal α_i
- approximate α_i .

Hypergeometric motives

We can also fail in the other direction.

Consider equations

$$H: \prod_{i=1}^{n} x_{i}^{\gamma_{i}} = t, \sum_{i=1}^{n} x_{i} = 0, x_{i} \neq 0.$$

for some integers γ_i and $t \in \mathbb{Q}$. We can efficiently compute most coefficients of L(H, s), but not the corresponding automorphic object.

Often one object is harder than the other one.

In progress: weight 1 modular forms

Often one object is easier than the other one, and we can take advantage of this!

All modular forms of weight 1 and level $N \leq X$:

- > X = 1500 (Buzzard–Lauder)
- > X = 4000 (PARI/GP, Belabas–Cohen)
- ► X = 10⁴ (Child, 1TB of memory) Time complexity O(X⁴), memory O(X²).
- ► $X = 10^6$ (new algorithm in PARI/GP, Allombert–P.). Time complexity $O(X^{\alpha})$ for 2.5 $\leq \alpha \leq$ 4, low memory.

In progress: Hilbert modular forms

Currently being integrated into PARI/GP: fundamental domains for Fuchsian groups by James Rickards.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Area	Magma (s)	PARI/GP (s)	speedup
20.943	13	0.022	600
571.770	4200	3.1	1300
4490.383	2700000	1200	2200

This will allow us to compute Hilbert modular forms.

Projects

We plan to compute more automorphic objects:

higher dimensional arithmetic manifolds,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

numerical methods,

. . .

lattice-based methods

PARI/GP, playing the L-functions game of number theorists

Thank you !

PARI/GP, playing the L-functions game of number theorists

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●