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Foreword

This talk is taken from the lectures by François Boulier, given at the
CIMPA School : Algebraic and Tropical Methods for Solving Differential
Equations, Oaxaca, Mexico, June 2023.

https://www.matem.unam.mx/~lara/cimpa23.html
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The DifferentialAlgebra project

Author: François Boulier.

Goal
The DifferentialAlgebra project aims at providing:

BLAD, a C library dedicated to Ritt and Kolchin differential algebra,
and
BMI, a library providing interface packages for various scientific
computing software such as Maple, Sagemath, Python / Sympy ...

Repository
Git: codeberg.org/francois.boulier/DifferentialAlgebra/
Feel free to join, and “star” the project
No stable version yet, but working great !
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History of the DifferentialAlgebra project

Author: François Boulier.

2004 BLAD: Bibliothèques Lilloises d’Algèbre Différentielle

2007 BLAD-2.0

2009 BLAD-3.0

2010 BLAD is shipped with MAPLE 14, through the
DifferentialAlgebra package

2013 BLAD-3.10.4

2023 New project called DifferentialAlgebra
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References

The reference books are

Joseph Fels Ritt. Differential Algebra. 1950

Ellis Robert Kolchin. Differential Algebra and Algebraic Groups. 1973

Software demos, lecture notes and other documents available at

https://codeberg.org/francois.boulier/DifferentialAlgebra
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Definitions 1

Differential rings, fields are rings, fields endowed with finitely many
derivation operators δ1, . . . , δm

δ(a + b) = δ(a) + δ(b) ,

δ(a b) = δ(a) b + a δ(b) ,

δiδja = δjδia .

In the DifferentialAlgebra packages, an independent variable x is associated
to each derivation operator, which is viewed as d/dx

F differential field of characteristic zero
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Definitions 2

F{y1, . . . , yn} differential polynomial ring in n

differential indeterminates (= n unknown functions of the m independent
variables)

y , ẏ , ÿ , . . . are the derivatives (of the differential indeterminates)

3 ẏ2 ÿ + y3 + 4 is a differential polynomial of F{y}

3 ẏ2 y (3) + 6 ẏ ÿ2 + 3 y2 ẏ is its derivative

Let Σ be a set of differential polynomials then

[Σ] is the differential ideal generated by Σ (= the ideal generated by the
infinite set of all the derivatives of the elements of Σ)

{Σ} =
√

[Σ] is the perfect differential ideal generated by Σ

For many different meanings of “solution”, Σ, [Σ] and {Σ} have the same
solution set
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Academic Example 1

Let y(x) be a polynomial, say

y = x2 . (1)

Find an ODE for y (answer: ẏ2 − 4 y).

To convert (1) as a differential polynomial, y and x need to be both
differential indeterminates. Let us rename the derivation d/dx to d/dξ i.e.
view y = y(ξ) and x = x(ξ) and encode (1) as

Σ

{
y = x2 ,
ẋ = 1 (derivation w.r.t ξ)

In the differential polynomial ring F{x , y} differential elimination permits
to compute a characteristic set / regular differential chain representation of

{Σ} ∩F{y} .

Ranking x � y
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Definitions 3

A ranking is a total ordering on the infinite set of the derivatives of the
differential indeterminates. It permits to transform differential polynomials
into rewrite rules. W.r.t ranking x � y

Σ

{
y = x2 ,
ẋ = 1

becomes

Σ

{
x2 → y ,
ẋ → 1 .

The derivatives on the left hand sides are the leading derivatives of the
differential polynomials. Differential elimination, applied to Σ and the
ranking, produces a regular differential chain

A

{
x → 1

2 ẏ ,
ẏ2 → 4 y .

It can be proved that f ∈ {Σ} iff it is rewritten to zero by A
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Academic Example 2

Let y(x) be a more complicated expression, say

y = x2 + x
3
2 . (2)

Find an ODE for y .

Rename the derivation d/dx to d/dξ. Introduce some z = x
3
2 encoded by a

differential polynomial. Encode (2) as

Σ


y = x2 + z ,
z2 = x3 ,
ẋ = 1 (derivation w.r.t ξ)

In the differential polynomial ring F{x , y , z} compute a regular differential
chain which describes

{Σ} ∩F{y} .

Ranking (x , z)� y
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Definitions 4

If the input system Σ involves an inequation h 6= 0 then the differential
elimination process systematically simplifies

h p = 0 to p = 0 .

In algebraic terms, it computes a representation of the saturation ideal

{Σ} : h∞ = h−1 {Σ} ∩F{y1, . . . , yn}

This mechanism allows it to handle differential fractions

g

h
= 0

which are interpreted as g = 0, h 6= 0
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Academic Example 3

F. Lemaire and A. Poteaux. Decoupling multivariate fractions. CASC 2021

If F (x , y) ∈ Q(x , y) can be “decoupled”, then four exclusive cases may
occur, where G ∈ Q(x), H ∈ Q(y), c , d ∈ Q, d 6= 0:

F = G + H , F = c + G H , F = c +
1

G + H
, F = c +

d

1 + G H
·

Consider case (2). The formula

c = F − Fx Fy
Fxy

can be obtained by differential elimination over the partial differential system

F = c + G H , Gy = 0 , Hx = 0 , cx = 0 , cy = 0 , Gx 6= 0 , Hy 6= 0 .

Ranking (G ,H)� c � F
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If F (x , y) ∈ Q(x , y) can be “decoupled”, then four exclusive cases may
occur, where G ∈ Q(x), H ∈ Q(y), c , d ∈ Q, d 6= 0:

F = G + H , F = c + G H , F = c +
1

G + H
, F = c +

d

1 + G H
·

Differential elimination can be used to prove that cases are exclusive
Proving that (1) and (2) are exclusive amounts to proving that the differential
ideal defined by the following system contains 1

F = c + G H , Gy = 0 , Hx = 0 , cx = 0 , cy = 0 , Gx 6= 0 , Hy 6= 0 ,

F = Ḡ + H̄ , Ḡy = 0 , H̄x = 0 , Ḡx 6= 0 , H̄y 6= 0 .

Any ranking
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The Next Example

The example shows that general differential polynomial systems may arise
as limit systems when studying fast-slow dynamics

It features a nice encoding trick of flow conservation

The demo shows that sophisticated base fields may be useful

Sophisticated base fields too can be defined through regular differential
chains
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The Henri-Michaelis-Menten Formula

Differential elimination permits to perform a quasi-equilibrium
approximation of a polynomial differential system modeling a chemical
reaction system

E + S
k1−−−→←−−−
k−1

ES k2−−−→ E + P

The polynomial differential system before the approximation

One differential indeterminate by concentration. Three kinetic coefficients

d/dt E (t) = k2 ES(t)− k1 E (t) S(t) + k−1 ES(t) ,

d/dt ES(t) = −k2 ES(t) + k1 E (t) S(t)− k−1 ES(t) ,

d/dt S(t) = −k1 E (t) S(t) + k−1 ES(t) ,

d/dt P(t) = k2 ES(t) .
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The Formula After Reduction

Main assumption: there are fast reactions (= k1, k−1 � k2)

E + S
k1−−−→←−−−
k−1

ES k2−−−→ E + P

Henri-Michaelis-Menten Formula

d
dt

S(t) = −Vmax S(t)

K + S(t)
(Vmax,K constants)

Victor Henri, 1903
Leonor Michaelis and Maud Menten, 1913
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The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES k2−−−→ E + P

Contributions of fast reactions highlighted

d/dt E (t) = k2 ES(t)− k1 E (t) S(t) + k−1 ES(t) ,
d/dt S(t) = −k1 E (t) S(t) + k−1 ES(t) ,
d/dt ES(t) = −k2 ES(t) + k1 E (t)S(t)− k−1 ES(t) ,
d/dt P(t) = k2 ES(t) .

19 / 34



The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES k2−−−→ E + P

Encode the conservation of the flow by replacing the contribution of the
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d/dt E (t) = k2 ES(t)− F1(t) ,
d/dt S(t) = −F1(t) ,
d/dt ES(t) = −k2 ES(t) + F1(t) ,
d/dt P(t) = k2 ES(t) ,
0 = k1 E (t)S(t)− k−1 ES(t) .

Raw formula by eliminating F1(t) from Lemaire’s DAE
d
dt

S(t) = −ES(t) S(t)2 k1 k2 + ES(t)S(t) k−1 k2

k−1 ES(t) + S(t)2 k1 + S(t) k−1
·
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The Next Example

The example shows that general differential polynomial systems may arise
by polynomial encoding of non polynomial functions

It shows that case splitting may be important (general and singular
solution)

It shows that numerical integration problems are related to non existence of
formal power series solutions and can sometimes be overcome by Puiseux
series
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The Brachistochrone Equation

Assumptions A point with mass m is forced to follow a curve y(x) in the
(x , y)-plane between two fixed points (x , y) = (a, ya) and (b, yb). Its
movement follows the gravitational law. Its initial speed is zero. There is
no friction.

Problem Find the curve y(x) which minimizes the time needed to reach
the point (b, yb)

The solution is known as the brachistochrone curve
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The Brachistochrone Curve is a Cycloid

The classical equation

y ẏ2 + y = D (D = 2 r diameter of the circle)

Numerical integration problems at (x , y) = (0, 0) and (x , y) = (π r ,D)

y

x
x

r

r θ

y θ

(πr , 2r)

2πr

Picture from https://tex.stackexchange.com/questions/196957
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The Brachistochrone is Solution of Euler-Lagrange Equation

Functions y(x) which satisfy the assumptions are solutions of

dt
dx

=

√
1 + ẏ2

2 g y
·

We are thus looking to the function y(x) which minimizes the functional

y 7→
∫ b

a

√
1 + ẏ2

2 g y
dx .

Introduce the following Lagrangian:

L (y , ẏ) =

√
1 + ẏ2

2 g y
·

By the Beltrami identity, y(x) function satisfies the following equation
where c is a constant:

L − ẏ
∂L

∂ẏ
= c .
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Differential Elimination for Applying Euler-Lagrange

L (y , ẏ) =

√
1 + ẏ2

2 g y
, L − ẏ

∂L

∂ẏ
= c .

The Lagrangian is not polynomial but the Beltrami identity can be encoded
by a differential polynomial system Σ

The separant ∂L /∂ẏ is denoted SL

The last equation aims at renaming a constant

Apply differential elimination over the system

(Σ) L2 =
1 + ẏ2

2 g y
, 2 L SL =

ẏ

g y
, L− ẏ SL = c , D =

1
2 g c2 ·

Ranking (L,SL, g , c)� (y ,D)
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From a Differential Algebra Point of View

Two regular differential chains are produced

(A1) g =
1

2D c2 , ẏ2 =
D − y

y
, SL = c ẏ , L =

D c

y
.

(A2) g =
1

2D c2 , y = D , SL = 0 , L = c .

Regular differential chain A1 contains the brachistochrone equation

y ẏ2 + y = D . (3)

Regular differential chain A2 corresponds to a singular solution of Σ

y = D . (4)

The curve y(x) = D meets the cycloid at (x , y) = (π r ,D)
A numerical integration problem there
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Puiseux Series Solution

The brachistochrone equation

y ẏ2 + y = D

No formal power series solution and a numerical integration problem at

(x , y) = (0, 0)

A Puiseux series permits to perform the first numerical integration step

y(x) =
3

2
3

3
√
2 3
√
D

2
x

2
3 − 2

2
3 3 3
√
3

20 3
√
D

x
4
3 − 27

700D
x2 + · · ·
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The Next Example

Quite an applied example related to parameter estimation

It features a recent algorithm which applies symbolic integration method to
differential fractions

It shows the usefulness of differential fractions

A relationship to be investigated with tropical differential geometry?
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Parameter Estimation

[In some cases,] differential elimination permits to transform a nonlinear
least squares problem into a linear one by guessing a starting point for a
Newton like method.

1 2

k12

k21

ke ,Ve

u(t)
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Statement of the Problem

Given a parametric ODE system (parameters ke , Ve , k12, k21):

ẋ1(t) = −k12 x1(t) + k21 x2(t)− Ve x1(t)
ke+x1(t)

+ u(t),

ẋ2(t) = k12 x1(t)− k21 x2(t).

some measures:
y(t) = x1(t) is observed
x2(t) is not observed

t y(t) = x1(t)

0.00000 5.00000
0.11111 4.12917
. . .

1.00000 2.96261

some further data: command u(t), initial values, estimate of ke . . .

Estimate the values of the unknown parameters Ve , k12, k21
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Principle of the Method

To any candidate tuple (k12, k21,Ve) associate an error as follows

Integrate numerically the ODE system using the candidate tuple

The error is defined as the sum of the squares of the differences between
the ordinates of the measured points and that of the computed ones (here
error ' 6.38)

Apply a Newton/gradient method to decrease the error
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The Input-Output Equation

Newton/gradient methods require a starting point

The input-output equation provides it

Differential elimination permits to eliminate the non observed variable x2.
A pretty-printed form of the differential input-output equation is:

−θ1 u(t) + θ2
y(t)

y(t) + ke
+ θ3

d
dt

(
y(t)2

y(t) + ke

)
− θ4

d
dt

(
1

y(t) + ke

)
= u̇(t)− ÿ(t) ,

where the θi stand for the following blocks of parameters:

θ1 = k21 , θ2 = k21 Ve , θ3 = k12 + k21 , θ4 = k12 + k21 + Ve .
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Overview of the Parameter Estimation Process

1. Compute the starting point

Build an overdetermined linear system Ax = b by evaluating all terms but
the θ, over the measures, at many different t

−θ1 u(t) + θ2
y(t)

y(t) + ke
+ θ3

d
dt

(
y(t)2

y(t) + ke

)
− θ4

d
dt

(
1

y(t) + ke

)
= u̇(t)− ÿ(t) ,

Solve Ax = b by linear least squares : the θ are estimated

2. Recover the model parameter from the θ

Solve the nonlinear system

θ1 = k21 , θ2 = k21 Ve , θ3 = k12 + k21 , θ4 = k12 + k21 + Ve .

3. Refine model parameters by a Newton/gradient method
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Towards Integro-Differential Equations?

The DifferentialAlgebra packages contain an algorithm to transform the
input-output differential polynomial produced by the differential elimination
process into the following form, which is not the standard form of a polyno-
mial in the derivatives of the differential indeterminates

−θ1 u(t) + θ2
y(t)

y(t) + ke
+ θ3

d
dt

(
y(t)2

y(t) + ke

)
− θ4

d
dt

(
1

y(t) + ke

)
= u̇(t)− ÿ(t) ,

In general, any differential fraction f can be written (with some minimality
condition on the differential fractions fi )

f = f0 +
d
dt

f1 + · · ·+ dk

dtk
fk

F. Boulier et al. Additive Normal Forms and Integration of Differential Frac-
tions. JSC 2016
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Towards Integro-Differential Equations?

The particular form of the input-output equation permits to transform it into
an integral equation, less sensitive to noisy data at the linear system building
stage

− θ1
∫ t

a

∫ τ1

a
u(τ2) dτ2 dτ1

+ θ2

∫ t

a

∫ τ1

a

y(τ2)

y(τ2) + 1
dτ2 dτ1

+ θ3

(∫ t

a

y(τ)2

y(τ) + 1
dτ − y(a)2

y(a) + 1
(t − a)

)
− θ4

(∫ t

a

1
y(τ) + 1

dτ − 1
y(a) + 1

(t − a)

)
− ẏ(a) (t − a)

=

∫ t

a
u(τ) dτ − u(a) (t − a)− y(t) + y(a) .
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The Differential Algebra project

Thanks for you attention !

Author: François Boulier.

Repository
Git: codeberg.org/francois.boulier/DifferentialAlgebra/
Feel free to join, and “star” the project
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