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Sparse direct solvers and HPC

Code Aster (EDF)

Wide range of applications
(e.g. structural analysis, geoscience, electromagnetism,

circuit simulation, finite element and optimization . . .)

FEKO-EM (Altair)

⇒
Solve AX = B, with A a sparse matrix

and B dense or sparse
critical step in HPC simulations

⇒

Sparse direct linear solvers

Factor A = LU (or LDLT if A symmetric) ; solve LY = B, then UX = Y

Method of choice for its accuracy and robustness
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Example from geophysics: Full Waveform Inversion (FWI)
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3D EAGE/SEG overthrust model

(credits: SEISCOPE project)

=⇒

Frequency domain FWI
Helmholtz equations

⇒ AX = B

- A: complex unsymmetric sparse matrix

- B: multiple (very) sparse right-hand sides

- required accuracy ≈ 10−4

frequency flops LU Factor Storage Peak memory

2 Hz 9.0× 1011 3 GB 4 GB

4 Hz 1.6× 1013 22 GB 25 GB

8 Hz 5.8× 1014 247 GB 283 GB

10 Hz 2.7× 1015 728 GB 984 GB

Higher frequency leads to refined model,
non linear increase of flops/memory



Complexity analysis of sparse direct methods

3D example in earth science:
acoustic wave propagation, 27-point finite difference

Extrapolation n = N3 = 10003 grid:
55 exaflops, 200 TBytes for factors,
40 TBytes of working memory!

Regular problems 2D 3D

(nested dissections) N ×N grid N ×N ×N grid

Nonzeros in original matrix Θ(N2) Θ(N3)
Nonzeros in factors Θ(N2log n) Θ(N4)
Floating-point ops Θ(N3) Θ(N6)
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Cost analysis

3D example in earth science:

Extrapolation N3 = 10003 grid:
55 exaflops, 200 TBytes for factors,
40 TBytes of working memory!

Computer related data

• Peak perf.: 2 Pflops/s
(power: 1 MW)

• 0.2D/kW.h

Cost of ONE factorization assuming 10% efficiency

• ∼ 76 h 10% × ((55 exaflops / 2 Pflops/s) / 3600)

• 76 MW.h (15200D for energy)

Critical: energy consumption, parallel efficiency, flops and memory complexity
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Challenges for sparse direct solvers

• Complexity of direct methods (flops, memory, energy) in the context of increasingly
large applications

• Efficiency and robustness in the context of heterogeneous computers (numerical and
algorithmic issues)

• Controlled precision and mixed-precision arithmetic

Heterogeneity within application, hardware (processor, memory), arithmetic
⇒ great algorithmic challenges. . . but also great opportunities
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From sparse matrix to dense kernels: the multifrontal approach

Solution of AX = B performed in 3 phases:
(A n× n sparse matrix with NZ non-zeros)

1. analysis, on the graph of A
◦ build ordering (METIS, SCOTCH, parMETIS, pt-SCOTCH, . . . )

◦ prepare factorization, symbolic factorization, build elimination tree
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struc(A)= struc(L,U)=

5

5
4
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4
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2
32. numerical factorization, decompose A = LU

◦ work on dense matrices following elimination tree
◦ stability relies on numerical pivoting

3. solve, forward and backward substitutions LY = X, UX = Y
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Illustration on a real application

Eight-domain partitionning

→

Tree of separators

Courtesy of LSTC (Livermore Software Technology Corp.) and Rolls-Royce
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Block Low-Rank general context and main features

• Approximate factorization A ≈ LεUε at accuracy ε controlled by the user

⇒ Many representations: Recursive H,H2, HSS, HODLR, BLR . . .

Block Low-Rank1 (BLR)

• Flat and simple format

◦ Robust algebraic solver, compatible with the numerical features of a general solver
◦ Backward stability proved by Higham and Mary, IMA J. Num. Ana. (2021)

• Reduced complexity, e.g., for 3D Helmholtz n = N3 3D mesh

◦ Operations during facto. : Full-Rank, O
(
N6

)
→ BLR, O

(
N5

)
◦ Size of LU factors : Full-Rank, O

(
N4

)
→ BLR, O

(
N3.5

)
Work supported by PhD theses: C. Weisbecker (2010-2013, EDF grant) T. Mary (2014-2017), B. Vieublé
(2019-2022) and M. Gerest (2020-, EDF grant)

1
See publications in SIAM J. Sci. Comput. or ACM Trans. Math. Soft.: “Improving multifrontal methods by means of block low-rank representations” (2015), “ On the

complexity of the Block Low-Rank multifrontal factorization” (2017), “Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format” (2019),
“Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures” (2018)
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Block Low-Rank (BLR) multifrontal factorization: principle

Sparse matrix A

⇒

Elimination tree

⇒
→ L

U

At each node (partial

factorization)

B

Frontal matrix

⇒ B ≈ X

Y T

Truncated SVD/RRQR on B

⇒ ∥B −XY T ∥ ≤ ϵ∥A∥

Reduced storage and

computations

Mixed precision used to store X,Y while preserving accuracy ϵ
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Block Low-Rank: flops reduction versus time performance

Required accuracy: 10−9 Required accuracy: 10−3
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Structural mechanics, n = 8M
Flop Ratio=17

Seismic imaging, n = 17M
Flop Ratio=27

Electromagnetism, n = 21M
Flop Ratio=65
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Structural mechanics, n = 8M
Flop Ratio=17

→ Time Ratio= 6

Seismic imaging, n = 17M
Flop Ratio=27

→ Time Ratio= 7

Electromagnetism, n = 21M
Flop Ratio=65

→ Time Ratio=19

Converting flop reduction into performance gains is not straightforwarda

a
Amestoy, Buttari, L’Excellent, Mary, Performance and Scalability of the BLR Multifrontal Factorization on Multicores, ACM Trans. on Math. Soft. 2018
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Low precision arithmetics

Signif. bits (t) Exp. Rang u = 2−t

fp64 53 11 10±308 1× 10−16

fp32 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2) 3 5 10±5 1× 10−1

Opportunities to:
• Reduce storage, data movement, and communication

• Increase speed and reduce energy

• However, reduced range and accuracy: low precision ≡ low accuracy

→ Motivation to use mixed precision algorithms
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Mixed precision low-Rank approximation: algorithm2

Xε Y T
εΣε

X1 X2

Y T
1

Y T
2

Σ2Σ1

Truncated SVD

• B ≈
∑r

i=1 xiσiy
T
i , with r such that

• ∥B −XεΣεY
T
ε ∥ ≤ ε∥A∥

2work supported by EDF16/39 Sparse direct solvers and HPC, RTCA’23



Mixed precision low-Rank approximation: algorithm3

Xε Y T
εΣε

X1 X2

Y T
1

Y T
2

Σ2Σ1

Truncated SVD with 2-precision formats (fp64, fp32)

• Can convert X2 and Y2 to single precision

• Criterion for storing columns xi, yi in precision fp32: σi ≤ ε
us
∥A∥, with us = 6 × 10−8

• ∥B −XΣY T ∥ ≤ 3ε∥A∥ ⇒ preserved accuracy2

2see Amestoy et al. 2022, IMA JNA https://doi.org/10.1093/imanum/drac037
3work supported by EDF16/39 Sparse direct solvers and HPC, RTCA’23

https://doi.org/10.1093/imanum/drac037


Mixed BLR: dissociate storage and compute precisions

Exploiting precisions for computations other than fp64 and fp32 is hardware dependent but
mathematical theory applies to any number of precisions

Storage precisions:
large number, arbitrary format

Compute precisions:
small number, available in hardware

• Switch between storage and compute representations only once at factorization and solve

• Targeting storage gains:
◦ 64-bit computations: 7 precisions for storage: 16, 24, 32, 40, 48, 56, 64 bits
◦ 32-bit computations: 3 precisions for storage: 16, 24, 32 bits
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Mixed precision low-rank approximation: illustration

thmgaz matrix, provided by EDF
(n = 8M , 2 MPI × 18 threads, ϵBLR = 10−10)

Factor Total Factorization Solve Backward

size(GB) memory(GB) time(s) time(s) error

BLR double 95 131 85 0.45 6× 10−14

BLR mixed 59 105 93 0.35 6× 10−14

⇒ Memory and solve time reductions, with preserved accuracy

. . . ongoing work: use mixed precision to accelerate factorization

18/39 Sparse direct solvers and HPC, RTCA’23



Outline

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities
Parallelism: MPI+multithreading
Exploiting accelerators

MUMPS a free software supported by industry and academy

19/39 Sparse direct solvers and HPC, RTCA’23



Analysis phase

Cost of analysis can be significant with respect to numerical phases

• numerical phases benefit from low rank compression and are highly parallelized

• parallel ordering techniques (parmetis, pt-scotch) sometimes lead to lower quality orderings

Motivated by properties of applications, we illustrate here recent work done on using
graph compression during all steps of the analysis phase (ordering, symbolic
factorization and BLR clustering)
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Analysis by blocks

Objective: Exploit block structure of sparse matrices to reduce time and memory
footprint of analysis phase

(k dofs per block ⇒ k (k2) less vertices (edges) to handle!)

Block format → compressed graph Gcomp

MUMPS new

MUMPS new

Distributed Matrix
Distributed Graph

Centralized Compressed Graph (Gcomp)

Distributed Compressed Graph

Reordering on GComp

Reduce time+memory: NZG → NZGcomp =
1
k2NZG (for k dofs per block)
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Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization 4 and
p-adaptivity HDG Matrix 65k-2hz, general symmetric of order n = 10M , NZ

G(A+AT )
= 5 566M ,

factorization on 360 cores (Olympe)
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Elastic SEAM model, S-wave speed model. At 2Hz, the wavelength is between 300 and 1500 m.

dofs on cell faces have identical adjacencies and form blocks
in the matrix

n/ncomp = 24 −→ NZG/NZGcomp = 699 > 242

• Application in structural mechanics, Matrix EngineAssy5M 32 unsymmetric of order n = 4.6M ,
NZ

G(A+AT )
= 94M , factorization on 64 cores (Olympe)

average number of dofs per grid point is 3

n/ncomp = 3 −→ NZG/NZGcomp = 32

HDG Matrix 65k-2hz EngineAssy5M 32

Analysis by blocks

Time (sec) for OFF

ON

OFF

ON

Analysis 337

7

90

44

Factorization 98

98

38

38

4
M. Bonnasse-Gahot, H. Calandra, J. Diaz, and S. Lanteri, Hybridizable discontinuous Galerkin method for the 2D frequency-domain elastic

wave equations, Geophysical Journal International, 213 (2017), pp. 637-659.



Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization and
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Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization and
p-adaptivity HDG Matrix 65k-2hz, general symmetric of order n = 10M , NZ

G(A+AT )
= 5 566M ,

factorization on 360 cores (Olympe)

dofs on cell faces have identical adjacencies and form blocks
in the matrix

n/ncomp = 24 −→ NZG/NZGcomp = 699 > 242

• Application in structural mechanics, Matrix EngineAssy5M 32 unsymmetric of order n = 4.6M ,
NZ

G(A+AT )
= 94M , factorization on 64 cores (Olympe)

average number of dofs per grid point is 3

n/ncomp = 3 −→ NZG/NZGcomp = 32

HDG Matrix 65k-2hz EngineAssy5M 32

Analysis by blocks

Time (sec) for OFF ON OFF ON

Analysis 337 7 90 44
Factorization 98 98 38 38



Outline

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities
Parallelism: MPI+multithreading
Exploiting accelerators

MUMPS a free software supported by industry and academy

23/39 Sparse direct solvers and HPC, RTCA’23



Table of Contents

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities
Parallelism: MPI+multithreading
Exploiting accelerators

MUMPS a free software supported by industry and academy

24/39 Sparse direct solvers and HPC, RTCA’23



Managing parallelism: multicores

C
o

re
s

memory

Compute node

C
o

re
s

memory

Compute node

Network

Many cores sharing memory per compute node

Hybrid parallelization

• Distributed memory parallelism (MPI based)

combined to shared-memory parallelism (multithreading):

◦ use of multithreaded BLAS
◦ OpenMP directives

Nb of cores per node increases → more multithreading needs be exposed
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Multithreaded tree parallelism feature

Strategy for hybrid parallelization (case of multiple threads per MPI process):

(work based on W. M. Sid-Lakhdar’s PhD thesis, 2014)

◦ parallelism between nodes of the elimination tree (MPI only)
◦ parallelism within nodes (MPI and OpenMP)
◦ under “L0-MPI”: one MPI process per subtree (to limit communication)

◦ under “L0-threads”: one thread per subtree

layer “L0-MPI”

thr0-3thr0-3thr0-3thr0-3

Node parallelism

(shared workspace)

layer “L0-threads”

thr0-3 thr0-3

thr0-3
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Multithreaded tree parallelism feature

Strategy for hybrid parallelization (case of multiple threads per MPI process):
(work based on W. M. Sid-Lakhdar’s PhD thesis, 2014)

◦ parallelism between nodes of the elimination tree (MPI and OpenMP )

◦ parallelism within nodes (MPI and OpenMP)
◦ under “L0-MPI”: one MPI process per subtree (to limit communication)

◦ under “L0-threads”: one thread per subtree

layer “L0-MPI”

thr0 thr1 thr2 thr3

Node parallelism

(shared workspace)

Tree parallelism

(one local workspace

for each thread)

layer “L0-threads”

thr0-3 thr0-3

thr0-3
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L0-threads feature: impact on BLR and solve phase

Code Aster RIS pump

Matrix from structural mechanics, real, symmetric:
perf009ar from EDF

n=5.4M, NZ=208M, flops(LDLT )= 1.8× 1013

pivots: 79k delayed, 37k 2×2, 74k negative

Time on 36 cores (s) Memory allocated

Factorization Solve (1 RHS) (GB)

L0-threads OFF (36 MPI × 1 thread)

BLR (εblr= 10−9) 22.4 0.41 72
(2 MPI × 18 threads)

BLR (εblr= 10−9) 41.3 2.58 36
L0-thread ON (2 MPI × 18 threads)

BLR (εblr= 10−9) 18.7 0.50 39
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Exploiting accelerators

memory
larger

memory

Offload

Accelerators

Cores/CPU

larger memory on CPU

memory

memory
larger

Cores/CPU Offload

Accelerators

larger memory on accelerators

Types of compute nodes with accelerators

Collaborations

• Larger memory on CPU: offload from CPU to GPU (support of Altair), use runtime libraries for

BLAS on GPU:

◦ cublasXt: provided by Nvidia
◦ XKBlas: collaboration with T. Gautier (Inria-ENS Lyon), also supports AMD GPU

• Larger memory on accelerator

◦ NEC SX-Aurora vector processor (collaboration with NEC):
offload scalar parts from vector engine to CPU

◦ OpenMP 5.0 approach: target new supercomputer nodes from French national center4: 512
GB on four AMD MI250X GPU, 256 GB on CPU

4collaboration with GENCI, CINES, HPE and AMD
29/39 Sparse direct solvers and HPC, RTCA’23



Portability on offloading from CPU to GPU approach

XKBlas evolutions (T. Gautier, Inria LIP-ENS Lyon)

• Improve performance and robustness, reduce memory transfers

◦ chain GPU operations,
◦ new kernels (GEMMT, copy-scale algorithm under discussion)

• Portability on AMD GPUs: XKBlas for AMD GPUs

(available on the GitLab of XKBlas: xkblas-v0.4-rc6-1-gfe1cb265)

Preliminary results on MUMPS from T. Gautier:

LDLT MechaStruct8M LU 3D Laplacian

AMD MI50 V100 AMD MI50 V100

(*)0 GPU 796s 780s 719 749

1 GPU 367s 358s 298 371

2 GPU 292s 295s 240 266
(*) 36 cores, AMD or Intel

• Ongoing: test and tune XKBlas on recent AMD GPU (MI250X) in the context of
GENCI-CINES-HPE-AMD collaboration

30/39 Sparse direct solvers and HPC, RTCA’23
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Symmetric indefinite matrices on GPU: influence of numerical pivoting

DL
T

21

21
L

L
11

T

11
L

Fully summed
rows

Contrib. Block

rows

CPUs

CPUs

(GEMMT/GEMM on GPUs)

• Numerical pivoting CNTL(1)=0.01

◦ Less BLAS-3 kernels than with CNTL(1)=0.0
◦ BLAS-2 update of L21:

- performance issue on GPUs but also on multicores

• Relaxed pivoting with CNTL(1)=0.01

◦ Vector of column norms used to represent block L21

see Duff, Pralet SIAM SISC (2007)
◦ Enable BLAS-3 update of L21:

CALMIP Olympe computer, time for factorization in seconds

3D Wave equations, 18 cores, XKBlas

Factorization time (sec)

Numerical pivoting OFF (CNTL(1)=0)

18 cores 382

18 cores + 1 GPU 201
Numerical pivoting ON (CNTL(1)=0.01)

18 cores 432

18 cores + 1 GPU 352
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Symmetric indefinite matrices on GPU: influence of numerical pivoting

DL
T

21

21
L

L
11

T

11
L

MAX (L    )
21

Fully summed
rows

Contrib. Block

rows

CPUs

(GEMMT/GEMM on GPUs)

(TRSM on GPUs)

• Numerical pivoting CNTL(1)=0.01

◦ Less BLAS-3 kernels than with CNTL(1)=0.0
◦ BLAS-2 update of L21:

- performance issue on GPUs but also on multicores

• Relaxed pivoting with CNTL(1)=0.01

◦ Vector of column norms used to represent block L21

see Duff, Pralet SIAM SISC (2007)
◦ Enable BLAS-3 update of L21:

CALMIP Olympe computer, time for factorization in seconds

3D Wave equations, 18 cores, XKBlas

Factorization time (sec)

Numerical pivoting OFF (CNTL(1)=0)

18 cores 382

18 cores + 1 GPU 201
Numerical pivoting ON (CNTL(1)=0.01) + Relaxed pivoting

18 cores 432 → 379

18 cores + 1 GPU 352 → 216
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Tuning MUMPS for NEC vector engine

Experimental environment

• NEC SX-Aurora 10B, 8 cores, 2.15 Tflops/s peak, 48 GBytes

• 3D frequency-domain FWI, 27-point stencil (Geoazur – S. Operto)

Performance of tuned version for VE (since MUMPS 5.5)

Matrix N complex factors 1MPIx8threads

(1E6) flops GBytes Gflops/s LU factorization time

Geo1153 1.52 3.1E13 32.2 717(*) 44 s

(*)corresponds to 2.8 Tflops/s in single precision, real arithmetic (peak = 4.3 Tflops/s).

Block Low-Rank compression (ϵ = 10−4) on NEC VE (since MUMPS 5.6)

NEC SX-Aurora VE Memory used (GBytes) LU factorization time

1MPIx8threads Full-Rank Block Low-Rank Full-Rank Block Low-Rank

10B 1.4 GHz 42 38 44 s 39 s

20B 1.6 GHz 42 38 38 s 27 s
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MUMPS: brief history of a free software

- Multifrontal approach: Schreiber’82; Duff, Reid’83

- 1996-1999: MUMPS started in Toulouse (EU LTR project PARASOL) inspired from a
shared memory research code

- 2000: First “public domain” version of MUMPS

- 2014-2019: Consortium of MUMPS users
Founding members: CERFACS, INPT, Inria, ENS-Lyon, Bordeaux University; Members: EDF,

Altair, Michelin, LSTC (USA), SISW-Siemens (Belgium), ESI, Total, FFT/MSC Soft. (Belgium), SAFRAN,

Lawrence Berkeley Nat. Lab. (USA)

- 2015: MUMPS 5.0.0, first CeCILL-C version of MUMPS

- 2019: Creation of Mumps Technologies SAS to ensure software sustainability and
development of MUMPS solver – http://mumps-tech.com

- 2023: Fifth edition of the MUMPS Users Days
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The MUMPS solver – http://mumps-solver.org

• Free software package, state-of-the-art in its field (fed by the research – 13 theses)

• Co-developed in Toulouse-Lyon-Paris-Bordeaux by CERFACS, CNRS, ENS Lyon, INPT, Inria, Bordeaux

Univ. and, since 2019, Mumps Technologies

Users: developers of simulation software

• Used worldwide by industrials/academics

• Part of commercial and open-source packages

• User community (3 explicit software requests/day)

◦ Users days every 3-4 years
◦ ≃ 800 users emails per year
◦ mumps-users mailing list: ≃ 600 subscribers

• Latest release: MUMPS 5.6.1 July 2023,
≈ 250 000 lines of C and Fortran code

• License: CeCILL-C

Map of the download requests
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Partners supporting the MUMPS solver (Gold subscription to Mumps Technologies):
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Summary of recent activities and collaborations

• Mixed precision:

◦ PhD thesis of Bastien Vieublé (2019-2022), IRIT (Univ. of Toulouse) on mixed precision iterative
refinement (see, Combining sparse approximate factorizations with mixed precision iterative refinement, Amestoy, Buttari, Higham,

L’Excellent, Mary and Vieublé. ACM Trans. on Math. Software [2022])

◦ PhD thesis of Matthieu Gerest (2020-) EDF-LIP6 on mixed precision BLR factorization (see, Mixed precision

low-rank approximations and their application to block low-rank LU factorization, Amestoy, Boiteau, Buttari, Gerest, Jézéquel,

L’Excellent, Mary, IMA J. of Num. Anal. [2023])

• Computer driven activities:

◦ Compute nodes with GPUs

• Data on CPU (offload BLAS kernels, with Altair and Inria-LIP-ENS Lyon)
• Data on GPU (OpenMP 5 related, with CINES and HPE)

◦ NEC vector processors (collaboration with NEC)

• Application driven collaborations:

◦ PhD thesis of Sébastien Dubois (2022-). Parallel algebraic iterative linear solvers, in collaboration with
ONERA (France) and LIP6 (Sorbonne University),

◦ Rank-Revealing feature, collaboration with SAFRAN
◦ HDG matrices and BLR mixed precision (with TotalEnergies and Inria Makutu)
◦ Seismic Imaging by Waveform Inversion with WIND project (see, Is 3D frequency-domain FWI of

full-azimuth/long-offset OBN data feasible? The Gorgon-data FWI case study, Operto, Amestoy, Aghamiry, Beller, Buttari, Combe,

Dolean, Gerest, Guo, Jolivet, L’Excellent, Mamfoumbi, Mary, Puglisi, Ribodetti, Tournier, The Leading Edge [2023] )

https://dl.acm.org/doi/10.1145/3582493
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037
https://avalon.ens-lyon.fr/
https://www.cines.fr/en/
https://team.inria.fr/makutu/
https://www.geoazur.fr/WIND/bin/view
https://doi.org/10.1190/tle42030173.1
https://doi.org/10.1190/tle42030173.1


Thank you!
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Experimental environment

• CALMIP center of Toulouse (grant number P0989):

Olympe nodes

◦ CPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6
TFlops/s DP), 192 GB memory per node

◦ GPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6
TFlops/s DP), 384 GB memory per node,
4 GP-GPU Nvidia Volta (V100 - 7.8 TFlops/s DP)

TURPAN from MésoNET project, experimental computer: 15 nodes with
◦ Ampere Altra Max Q80-30 (ARM version 8.2) 80 cores @3 GHz (peak 24Gflops/s/core), peak

1.9 Tflops/s DP, 512 GB memory
◦ 2 GPU Nvidia A100-80, 19.5 Tflops/s DP per GPU, 2x80 GB memory

• GENCI-CINES, ADASTRA supercomputer: HPE Cray EX235a
◦ 61.6 PFlops/s peak, 46 PFlops/s (Linpack); 50 GFlops/Watt
◦ accelerated nodes based on AMD Optimized 3rd Generation EPYC 64C 2.4 GHz,

512 GB on four AMD Instinct MI250X GPU, 256 GB on CPU

• NEC SX-Aurora Type 10B with 8 cores, 1.4GHz, 2.15 TFlops/s peak, 48 GB
and NEC SX-Aurora Type 20B, 1.6GHz
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