Sparse direct solvers and HPC

RTCA 2023, Mathematical Software and High Performance Algebraic Computing

MUMPS group – CERFACS, CNRS, ENS-Lyon, INRIA, INPT, Mumps Technologies, Univ. Bordeaux (speaker: Jean-Yves L'Excellent, Mumps Technologies)

ENS-Lyon, site Monod, 26-30 June 2023

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Sparse direct solvers and HPC

Code Aster (EDF)

Wide range of applications

(e.g. structural analysis, geoscience, electromagnetism, circuit simulation, finite element and optimization ...)

FEKO-EM (Altair)

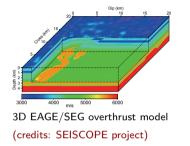
Solve AX = B, with A a sparse matrix and B dense or sparse critical step in HPC simulations

Sparse direct linear solvers

Factor A = LU (or LDL^T if A symmetric) ; solve LY = B, then UX = Y

Method of choice for its accuracy and robustness

Example from geophysics: Full Waveform Inversion (FWI)



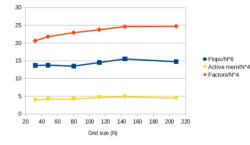
 $\begin{array}{ll} \mbox{Frequency domain FWI} \\ \mbox{Helmholtz equations} \end{array} \Rightarrow \quad {\bf AX} = {\bf B} \end{array}$

- A: complex unsymmetric sparse matrix
- B: multiple (very) sparse right-hand sides
- required accuracy $\,pprox 10^{-4}$

frequency	flops LU	Factor Storage	Peak memory
2 Hz	9.0×10^{11}	3 GB	4 GB
4 Hz	1.6×10^{13}	22 GB	25 GB
8 Hz	$5.8 imes 10^{14}$	247 GB	283 GB
10 Hz	2.7×10^{15}	728 GB	984 GB

Higher frequency leads to refined model, non linear increase of flops/memory

Complexity analysis of sparse direct methods

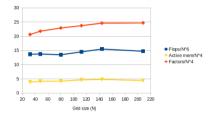


3D example in earth science:

acoustic wave propagation, 27-point finite difference

Extrapolation $n = N^3 = 1000^3$ grid: 55 exaflops, 200 TBytes for factors, 40 TBytes of working memory!

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
$\begin{array}{c cccc} \mbox{Nonzeros in original matrix} & \Theta(N^2) & \Theta(N^3) \\ \mbox{Nonzeros in factors} & \Theta(N^2 log n) & \Theta(N^4) \\ \end{array}$	Regular problems	2D	3D
Nonzeros in factors $\Theta(N^2 log n) = \Theta(N^4)$	(nested dissections)	N imes N grid	N imes N imes N grid
	Nonzeros in original matrix	- ()	
Floating-point ops $\Theta(N^3)$ $\Theta(N^6)$	Nonzeros in factors		
	Floating-point ops	$\Theta(N^3)$	$\Theta(N^6)$



3D example in earth science:

Extrapolation $N^3 = 1000^3$ grid: 55 exaflops, 200 TBytes for factors, 40 TBytes of working memory!

Computer related data

- Peak perf.: 2 Pflops/s (power: 1 MW)
- 0.2€/kW.h

Cost of ONE factorization assuming 10% efficiency

- $\sim 76~h$ 10% imes ((55 exaflops / 2 Pflops/s) / 3600)
- 76 MW.h (15200€ for energy)

Critical: energy consumption, parallel efficiency, flops and memory complexity

Challenges for sparse direct solvers

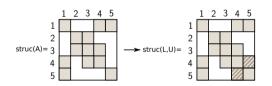
- Complexity of direct methods (flops, memory, energy) in the context of increasingly large applications
- Efficiency and robustness in the context of heterogeneous computers (numerical and algorithmic issues)
- Controlled precision and mixed-precision arithmetic

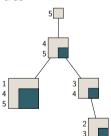
Heterogeneity within application, hardware (processor, memory), arithmetic \Rightarrow great algorithmic challenges... but also great **opportunities**

From sparse matrix to dense kernels: the multifrontal approach

Solution of AX = B performed in 3 phases: (A $n \times n$ sparse matrix with NZ non-zeros)

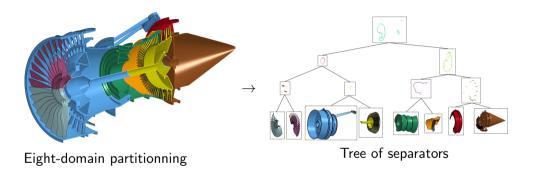
- 1. analysis, on the graph of ${\bf A}$
 - build ordering (METIS, SCOTCH, parMETIS, pt-SCOTCH, ...)
 - prepare factorization, symbolic factorization, build elimination tree





- 2. numerical factorization, decompose $\mathbf{A} = \mathbf{L}\mathbf{U}$
 - work on dense matrices following elimination tree
 - stability relies on numerical pivoting
- 3. solve, forward and backward substitutions $\mathbf{L}\mathbf{Y} = \mathbf{X}$, $\mathbf{U}\mathbf{X} = \mathbf{Y}$

Illustration on a real application



Courtesy of LSTC (Livermore Software Technology Corp.) and Rolls-Royce

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Block Low-Rank general context and main features

• Approximate factorization $\mathbf{A} \approx \mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ at accuracy ε controlled by the user

 \Rightarrow Many representations: Recursive $\mathcal{H}, \mathcal{H}^2$. HSS. HODLR. BLR ...

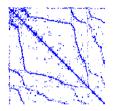
Block Low-Rank¹ (BLR)

- Flat and simple format
 - Robust algebraic solver, compatible with the numerical features of a general solver 0
 - Backward stability proved by Higham and Mary, IMA J. Num, Ana. (2021)
- Reduced complexity, e.g., for 3D Helmholtz $n = N^3$ 3D mesh
 - Operations during facto. : Full-Rank, $\mathcal{O}(N^6) \rightarrow \text{BLR}, \mathcal{O}(N^5)$ Size of *LU* factors : Full-Rank, $\mathcal{O}(N^4) \rightarrow \text{BLR}, \mathcal{O}(N^{3.5})$

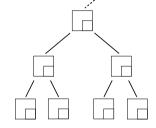
Work supported by PhD theses: C. Weisbecker (2010-2013, EDF grant) T. Mary (2014-2017), B. Vieublé (2019-2022) and M. Gerest (2020-, EDF grant)

[.] See publications in SIAM J. Sci. Comput. or ACM Trans. Math. Soft.: "Improving multifrontal methods by means of block low-rank representations" (2015). " On the complexity of the Block Low-Rank multifrontal factorization" (2017), "Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format" (2019), "Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures" (2018)

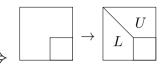
Block Low-Rank (BLR) multifrontal factorization: principle



Sparse matrix A

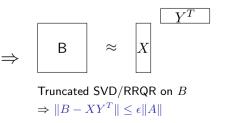


Elimination tree



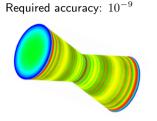
At each node (partial factorization)

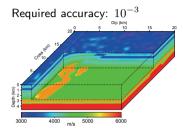
Frontal matrix

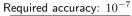


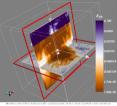
Reduced	storage	and
computati	ons	

Block Low-Rank: flops reduction versus time performance



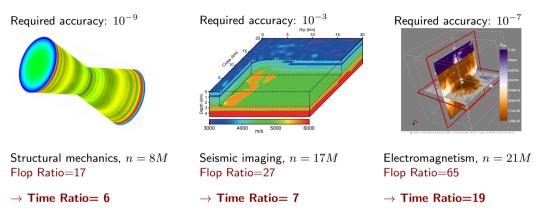






Structural mechanics, n = 8MFlop Ratio=17 Seismic imaging, n = 17MFlop Ratio=27
$$\label{eq:lectromagnetism} \begin{split} \text{Electromagnetism, } n = 21M \\ \hline \text{Flop Ratio=65} \end{split}$$

Block Low-Rank: flops reduction versus time performance



Converting flop reduction into performance gains is not straightforward^a

a Amestoy, Buttari, L'Excellent, Mary, Performance and Scalability of the BLR Multifrontal Factorization on Multicores, ACM Trans. on Math. Soft. 2018

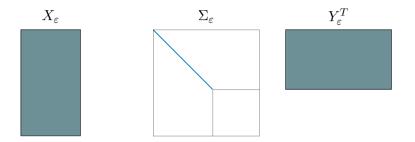
	Signif. bits (t)	Exp.	Rang	$u = 2^{-t}$
fp64	53	11	$10^{\pm 308}$	1×10^{-16}
fp32	24	8	$10^{\pm 38}$	6×10^{-8}
fp16	11	5	$10^{\pm 5}$	5×10^{-4}
bfloat16	8	8	$10^{\pm 38}$	4×10^{-3}
fp8 (e4m3)	4	4	$10^{\pm 2}$	6×10^{-2}
fp8 (e5m2)	3	5	$10^{\pm 5}$	1×10^{-1}

Opportunities to:

- Reduce storage, data movement, and communication
- Increase speed and reduce energy
- However, reduced range and accuracy: low precision \equiv low accuracy

\rightarrow Motivation to use mixed precision algorithms

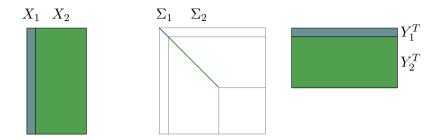
Mixed precision low-Rank approximation: algorithm²



Truncated SVD

- $B \approx \sum_{i=1}^r x_i \sigma_i y_i^T$, with r such that
- $\|B X_{\varepsilon} \Sigma_{\varepsilon} Y_{\varepsilon}^T\| \leq \varepsilon \|A\|$

Mixed precision low-Rank approximation: algorithm³



Truncated SVD with 2-precision formats (fp64, fp32)

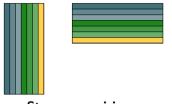
• Can convert X_2 and Y_2 to single precision

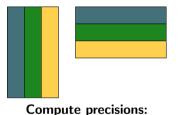
16/39

- Criterion for storing columns x_i, y_i in precision fp32: $\sigma_i \leq \frac{\varepsilon}{u_s} ||A||$, with $u_s = 6 \times 10^{-8}$
- $\|B X \Sigma Y^T\| \leq 3\varepsilon \|A\| \Rightarrow \text{preserved accuracy}^2$

²see Amestoy et al. 2022, IMA JNA https://doi.org/10.1093/imanum/drac037
³work supported by EDF
Sparse dire

Exploiting precisions for computations other than fp64 and fp32 is hardware dependent **but** mathematical theory applies to any number of precisions





Storage precisions: large number, arbitrary format

small number, available in hardware

- Switch between storage and compute representations only once at factorization and solve
- Targeting storage gains:
 - 64-bit computations: 7 precisions for storage: 16, 24, 32, 40, 48, 56, 64 bits
 - 32-bit computations: 3 precisions for storage: 16, 24, 32 bits

thmgaz matrix, provided by EDF (n = 8M, 2 MPI × 18 threads, $\epsilon_{BLR} = 10^{-10}$)

	Factor	Total	Factorization	Solve	Backward
	size(GB)	memory(GB)	time(s)	time(s)	error
BLR double	95	131	85	0.45	6×10^{-14}
BLR mixed	59	105	93	0.35	6×10^{-14}

 \Rightarrow Memory and solve time reductions, with preserved accuracy

... ongoing work: use mixed precision to accelerate factorization

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

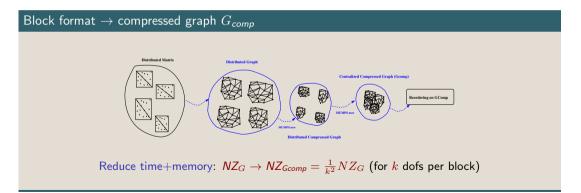
MUMPS a free software supported by industry and academy

Cost of analysis can be significant with respect to numerical phases

- numerical phases benefit from low rank compression and are highly parallelized
- parallel ordering techniques (parmetis, pt-scotch) sometimes lead to lower quality orderings

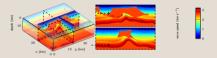
Motivated by properties of applications, we illustrate here recent work done on using graph compression during all steps of the analysis phase (ordering, symbolic factorization and BLR clustering)

Objective: Exploit block structure of sparse matrices to reduce time and memory footprint of analysis phase $(k \text{ dofs per block} \Rightarrow k (k^2) \text{ less vertices (edges) to handle!})$



Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization ⁴ and p-adaptivity HDG Matrix 65k-2hz, general symmetric of order n = 10M, $NZ_{G(A+A^T)} = 5$ 566M. factorization on 360 cores (Olympe)



Elastic SEAM model, S-wave speed model. At 2Hz, the wavelength is between 300 and 1500 m.

• Application in structural mechanics, Matrix EngineAssy5M_32 unsymmetric of order n = 4.6M,

 $NZ_{G(A+AT)} = 94M$, factorization on 64 cores (Olympe)

	HDG Mat	trix 65k-2hz	$EngineAssy5M_32$
	Analysis by blocks		
Time (sec) for	OFF		OFF
Analysis	337		90
Factorization	98		38

⁴M. Bonnasse-Gahot, H. Calandra, J. Diaz, and S. Lanteri, Hybridizable discontinuous Galerkin method for the 2D frequency-domain elastic wave equations, Geophysical Journal International, 213 (2017), pp. 637-659.

Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization and p-adaptivity HDG Matrix 65k-2hz, general symmetric of order n = 10M, $NZ_{G(A+A^T)} = 5566M$, factorization on 360 cores (Olympe)

dofs on cell faces have identical adjacencies and form blocks in the matrix

 $n/n_{comp} = 24 \longrightarrow NZ_G/NZ_{Gcomp} = 699 > 24^2$

• Application in structural mechanics, Matrix EngineAssy5M_32 unsymmetric of order n = 4.6M, $NZ_{G(A+AT)} = 94M$, factorization on 64 cores (Olympe) average number of dofs per grid point is 3

$$n/n_{comp} = 3 \longrightarrow NZ_G/NZ_{Gcomp} = 3^2$$

	HDG Mat	rix 65k-2hz	EngineAssy5M_32
	Analysis by blocks		
Time (sec) for	OFF		OFF
Analysis	337		90
Factorization	98		38

Analysis by blocks, performance analysis

• Time-harmonic wave problems using Hybridizable Discontinuous Galerkin discretization and p-adaptivity HDG Matrix 65k-2hz, general symmetric of order n = 10M, $NZ_{G(A+A^T)} = 5566M$, factorization on 360 cores (Olympe)

dofs on cell faces have identical adjacencies and form blocks in the matrix

 $n/n_{comp} = 24 \longrightarrow NZ_G/NZ_{Gcomp} = 699 > 24^2$

• Application in structural mechanics, Matrix EngineAssy5M_32 unsymmetric of order n = 4.6M, $NZ_{G(A+AT)} = 94M$, factorization on 64 cores (Olympe) average number of dofs per grid point is 3

$$n/n_{comp} = 3 \longrightarrow NZ_G/NZ_{Gcomp} = 3^2$$

	HDG Mat	rix 65k-2hz	EngineAs	sy5M_32
	Analysis by blocks			
Time (sec) for	OFF	ON	OFF	ON
Analysis	337	7	90	44
Factorization	98	98	38	38

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Context-main challenges

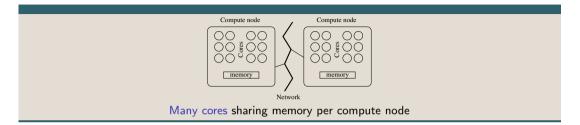
Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Managing parallelism: multicores



Hybrid parallelization

• Distributed memory parallelism (MPI based)

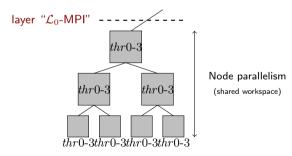
combined to shared-memory parallelism (multithreading):

- use of multithreaded BLAS
- OpenMP directives

Nb of cores per node increases \rightarrow more multithreading needs be exposed

Strategy for hybrid parallelization (case of multiple threads per MPI process):

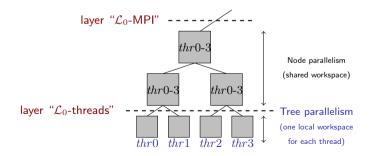
- parallelism between nodes of the elimination tree (MPI only)
- parallelism within nodes (MPI and OpenMP)
- under " \mathcal{L}_0 -MPI": one MPI process per subtree (to limit communication)



Multithreaded tree parallelism feature

Strategy for hybrid parallelization (case of multiple threads per MPI process): (work based on W. M. Sid-Lakhdar's PhD thesis, 2014)

- parallelism between nodes of the elimination tree (MPI and OpenMP)
- parallelism within nodes (MPI and OpenMP)
- under " \mathcal{L}_0 -MPI": one MPI process per subtree (to limit communication)
- under " \mathcal{L}_0 -threads": one thread per subtree



\mathcal{L}_0 -threads feature: impact on BLR and solve phase

Code_Aster RIS pump

Matrix from structural mechanics, real, symmetric: perf009ar from EDF n=5.4M, NZ=208M, flops (LDL^T) = 1.8 × 10¹³

pivots: 79k delayed, 37k 2×2, 74k negative

	Time on 3	36 cores (s)	Memory allocated
	Factorization	Solve (1 RHS)	(GB)
\mathcal{L}_0 -threads OFF		(36 MPI $ imes$ 1 three	ead)
BLR ($\varepsilon_{blr} = 10^{-9}$)	22.4	0.41	72
	(2 MPI $ imes$ 18 threads)		
BLR ($\varepsilon_{blr} = 10^{-9}$)	41.3	2.58	36
\mathcal{L}_0 -thread ON	(2 MPI \times 18 threads)		
BLR ($\varepsilon_{blr} = 10^{-9}$)	18.7	0.50	39

Context-main challenges

Reducing asymptotic complexity of direct methods

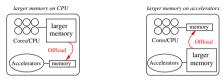
Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

Exploiting accelerators

Types of compute nodes with accelerators



Collaborations

29/39

- Larger memory on CPU: offload from CPU to GPU (support of Altair), use runtime libraries for BLAS on GPU:
 - cublasXt: provided by Nvidia
 - XKBlas: collaboration with T. Gautier (Inria-ENS Lyon), also supports AMD GPU
- Larger memory on accelerator
 - NEC SX-Aurora vector processor (collaboration with NEC): offload scalar parts from vector engine to CPU
 - OpenMP 5.0 approach: target new supercomputer nodes from French national center⁴: 512 GB on four AMD MI250X GPU, 256 GB on CPU

Portability on offloading from CPU to GPU approach

XKBlas evolutions (T. Gautier, Inria LIP-ENS Lyon)

- Improve performance and robustness, reduce memory transfers
 - chain GPU operations,
 - new kernels (GEMMT, copy-scale algorithm under discussion)
- Portability on AMD GPUs: XKBlas for AMD GPUs

(available on the GitLab of XKBlas: xkblas-v0.4-rc6-1-gfe1cb265)

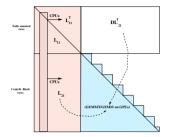
Preliminary results on MUMPS from T. Gautier:

	LDLT MechaStruct8M		LU 3D Laplacian	
	AMD MI50	V100	AMD MI50	V100
(*)0 GPU	796s	780s	719	749
1 GPU	367s	358s	298	371
2 GPU	292s	295s	240	266

(*) 36 cores, AMD or Intel

 Ongoing: test and tune XKB1as on recent AMD GPU (MI250X) in the context of GENCI-CINES-HPE-AMD collaboration

Symmetric indefinite matrices on GPU: influence of numerical pivoting

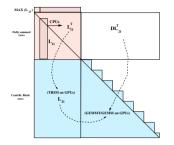


• Numerical pivoting CNTL(1)=0.01

- Less BLAS-3 kernels than with CNTL(1)=0.0
- BLAS-2 update of L_{21} :
 - performance issue on GPUs but also on multicores

CALMIP	Olympe computer, time for f	factorization in seconds
	3D Wave equations, 18 d	cores, XKBlas
		Factorization time (sec)
Numerical	<pre>pivoting OFF (CNTL(1)=0)</pre>	
	18 cores	382
	18 cores + 1 GPU	201
Numerical	<pre>pivoting ON (CNTL(1)=0.01)</pre>	
	18 cores	432
	18 cores + 1 GPU	352

Symmetric indefinite matrices on GPU: influence of numerical pivoting



• Numerical pivoting CNTL(1)=0.01

- $^{\circ}$ Less BLAS-3 kernels than with CNTL(1)=0.0
- BLAS-2 update of \mathbf{L}_{21} :
 - performance issue on GPUs but also on multicores

• Relaxed pivoting with CNTL(1)=0.01

- Vector of column norms used to represent block L₂₁ see Duff, Pralet SIAM SISC (2007)
- Enable BLAS-3 update of L_{21} :

CALMIP Olympe computer, time for fa	actorization in seconds
3D Wave equations, 18 co	ores, XKBlas
	Factorization time (sec)
Numerical pivoting OFF (CNTL(1)=0)	
18 cores	382
18 cores + 1 GPU	201
Numerical pivoting ON (CNTL(1)=0.01)	+ Relaxed pivoting
18 cores	$432 \rightarrow 379$
18 cores + 1 GPU	352 → 216

Tuning MUMPS for NEC vector engine

Experimental environment

- NEC SX-Aurora 10B, 8 cores, 2.15 Tflops/s peak, 48 GBytes
- 3D frequency-domain FWI, 27-point stencil (Geoazur S. Operto)

Performance of tuned version for VE (since MUMPS 5.5)

Matrix	N	complex	factors	1MPIx8threads		
	(1E6)	flops	GBytes	Gflops/s	LU factorization time	
${\tt Geo}115^3$	1.52	3.1E13	32.2	717(*)	44 s	

(*)corresponds to 2.8 Tflops/s in single precision, real arithmetic (peak = 4.3 Tflops/s).

Tuning MUMPS for NEC vector engine

Experimental environment

• NEC SX-Aurora 10B, 8 cores, 2.15 Tflops/s peak, 48 GBytes

• 3D frequency-domain FWI, 27-point stencil (Geoazur – S. Operto)

Performance of tuned version for VE (since MUMPS 5.5)

Matrix	N	complex	factors	1MPIx8threads		
	(1E6)	flops	GBytes	Gflops/s	LU factorization time	
${\tt Geo}115^3$	1.52	3.1E13	32.2	717(*)	44 s	

(*)corresponds to 2.8 Tflops/s in single precision, real arithmetic (peak = 4.3 Tflops/s).

Block Low-Rank compression ($\epsilon=10^{-4}$) on NEC VE (since MUMPS 5.6)

NEC SX-Aurora VE	Memory	used (GBytes)	LU factorization time		
1MPIx8threads	Full-Rank	Block Low-Rank	Full-Rank	Block Low-Rank	
10B 1.4 GHz	42	38	44 s	39 s	
20B 1.6 GHz	42	38	38 s	27 s	

Context-main challenges

Reducing asymptotic complexity of direct methods

Improving the analysis phase

Computer driven activities Parallelism: MPI+multithreading Exploiting accelerators

MUMPS a free software supported by industry and academy

MUMPS: brief history of a free software

- Multifrontal approach: Schreiber'82; Duff, Reid'83
- 1996-1999: MUMPS started in Toulouse (EU LTR project PARASOL) inspired from a shared memory research code
- 2000: First "public domain" version of MUMPS
- 2014-2019: Consortium of MUMPS users
 Founding members: CERFACS, INPT, Inria, ENS-Lyon, Bordeaux University; Members: EDF,
 Altair, Michelin, LSTC (USA), SISW-Siemens (Belgium), ESI, Total, FFT/MSC Soft. (Belgium), SAFRAN,
 Lawrence Berkeley Nat. Lab. (USA)
- 2015: MUMPS 5.0.0, first CeCILL-C version of MUMPS
- 2019: Creation of Mumps Technologies SAS to ensure software sustainability and development of MUMPS solver http://mumps-tech.com
- 2023: Fifth edition of the MUMPS Users Days

The MUMPS solver - http://mumps-solver.org

- Free software package, state-of-the-art in its field (fed by the research 13 theses)
- Co-developed in *Toulouse-Lyon-Paris-Bordeaux* by *CERFACS*, *CNRS*, *ENS Lyon*, *INPT*, *Inria*, *Bordeaux Univ.* and, since 2019, *Mumps Technologies*

Users: developers of simulation software

- Used worldwide by industrials/academics
- Part of commercial and open-source packages
- User community (3 explicit software requests/day)
 - $^{\circ}$ Users days every 3-4 years
 - $^{\circ}~\simeq$ 800 users emails per year
 - $^{\circ}$ mumps-users mailing list: \simeq 600 subscribers
 - Latest release: MUMPS 5.6.1 July 2023, \approx 250 000 lines of C and Fortran code
 - License: CeCILL-C

Map of the download requests

Partners supporting the MUMPS solver (Gold subscription to Mumps Technologies):

Summary of recent activities and collaborations

• Mixed precision:

- PhD thesis of Bastien Vieublé (2019-2022), IRIT (Univ. of Toulouse) on mixed precision iterative refinement (see, Combining sparse approximate factorizations with mixed precision iterative refinement, Amestoy, Buttari, Higham, L'Excellent, Mary and Vieublé. ACM Trans. on Math. Software [2022])
- PhD thesis of Matthieu Gerest (2020-) EDF-LIP6 on mixed precision BLR factorization (see, Mixed precision low-rank approximations and their application to block low-rank LU factorization, Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, Mary, IMA J. of Num. Anal. [2023])

• Computer driven activities:

- Compute nodes with GPUs
 - Data on CPU (offload BLAS kernels, with Altair and Inria-LIP-ENS Lyon)
 - Data on GPU (OpenMP 5 related, with CINES and HPE)
- NEC vector processors (collaboration with NEC)
- Application driven collaborations:
 - PhD thesis of Sébastien Dubois (2022-). Parallel algebraic iterative linear solvers, in collaboration with ONERA (France) and LIP6 (Sorbonne University),
 - Rank-Revealing feature, collaboration with SAFRAN
 - HDG matrices and BLR mixed precision (with TotalEnergies and Inria Makutu)
 - Seismic Imaging by Waveform Inversion with WIND project (see, Is 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon-data FWI case study, Operto, Amestoy, Aghamiry, Beller, Buttari, Combe, Dolean, Gerest, Guo, Jolivet, L'Excellent, Mamfoumbi, Mary, Puglisi, Ribodetti, Tournier, The Leading Edge [2023])

Thank you!

Experimental environment

• CALMIP center of Toulouse (grant number P0989):

Olympe nodes

- CPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6 TFlops/s DP), 192 GB memory per node
- GPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6 TFlops/s DP), 384 GB memory per node,
 4 GP-GPU Nvidia Volta (V100 7.8 TFlops/s DP)

TURPAN from MésoNET project, experimental computer: 15 nodes with

- Ampere Altra Max Q80-30 (ARM version 8.2) 80 cores @3 GHz (peak 24Gflops/s/core), peak 1.9 Tflops/s DP, 512 GB memory
- 2 GPU Nvidia A100-80, 19.5 Tflops/s DP per GPU, 2x80 GB memory
- GENCI-CINES, ADASTRA supercomputer: HPE Cray EX235a
 - 61.6 PFlops/s peak, 46 PFlops/s (Linpack); 50 GFlops/Watt
 - accelerated nodes based on AMD Optimized 3rd Generation EPYC 64C 2.4 GHz, 512 GB on four AMD Instinct MI250X GPU, 256 GB on CPU
- NEC SX-Aurora Type 10B with 8 cores, 1.4GHz, 2.15 TFlops/s peak, 48 GB and NEC SX-Aurora Type 20B, 1.6GHz