
FLINT: Fast Library for Number Theory

Fredrik Johansson

Mathematical Software and
High Performance Algebraic Computing

ENS Lyon
June 26, 2023

1 / 23

What is FLINT?

https://flintlib.org

The goal of FLINT is (roughly) to provide a single C library
with e�cient implementations of all the basic rings needed in
computational number theory and computer algebra.

Used, for instance, in SageMath and Oscar:

sage: R.<x> = PolynomialRing(ZZ, "x")

sage: %time a = (1+x)^10000 * (1-x)^10000

CPU times: user 640 ms, sys: 87.8 ms, total: 728 ms

Wall time: 733 ms

sage: len(str(a))

21804542

2 / 23

https://flintlib.org

FLINT programming

#include "fmpz_poly.h"

...

fmpz_poly_t a, b;

fmpz_poly_init(a);

fmpz_poly_init(b);

fmpz_poly_set_coeff_si(a, 0, 1);

fmpz_poly_set_coeff_si(a, 1, 1);

fmpz_poly_pow(a, a, 10000);

fmpz_poly_set_coeff_si(b, 0, 1);

fmpz_poly_set_coeff_si(b, 1, -1);

fmpz_poly_pow(b, b, 10000);

fmpz_poly_mul(a, a, b);

fmpz_poly_clear(a);

fmpz_poly_clear(b);

3 / 23

Types in FLINT
Basic types:
I fmpz, fmpq - integers, rationals
I nmod, fmpz_mod - integers mod n (single/multi-word)
I fq, fq_nmod, fq_zech - finite fields
I arb, acb - real, complex numbers (ball arithmetic)
I arf, acf - real, complex floating-point numbers
I nf_elem - number field elements
I qqbar - algebraic numbers (canonical form)
I ca - exact algebraic, real or complex numbers

Structural types (examples):
I fmpz_mat - matrices over Z
I fmpz_poly, fmpz_mpoly - elements of Z[x] and Z[x1, . . . , xn]

I fmpz_mpoly_q - elements of Q(x1, . . . , xn)

4 / 23

Data and algorithms in FLINT

I We give users access to all internals (for good or bad)
I Objects are mutable
I Arbitrary-size types inline small values: integers  62 bits,

floats  128 bits
I Big integers use GMP, plus a lot of FLINT-specific code
I Specific tricks: multivariate exponents use byte-packed

vectors, polynomials over Q use a single denominator, ...
I Many algorithms use non-canonical intermediate values

(delayed GCD reduction, modular reduction, rounding, etc.)
I We use asymptotically fast algorithms, but much e�ort has

also gone into optimizing small/medium input
I Many builtin functions are multithreaded (use

flint_set_num_threads(N))

5 / 23

Brief development history

FLINT was started in 2007 by Bill Hart and David Harvey.

FLINT 2: rewrite from scratch done around 2010 by Bill Hart,
Sebastian Pancratz and myself.

Dozens of authors (https://flintlib.org/authors.html).
Notable sources of funding include:
I Google Summer of Code
I H2020 “OpenDreamKit”
I DFG “Oscar”

Currently, I am the only active developer after the departure
of Bill Hart and Daniel Schultz in 2022.

6 / 23

https://flintlib.org/authors.html

Major changes in FLINT 3.0 (upcoming)

I Arb, Calcium and Antic merged into FLINT
I Partly due to lack of manpower
I The libraries were already tightly integrated
I Can use Arb arithmetic in traditional FLINT code, etc.

I Small-prime FFT (contributed by Daniel Schultz)
I Much faster arithmetic with huge numbers and polynomials

I Generic rings
I Entirely in C, e�cient, mathematically sound
I Useful both internally and as an external interface

I Autotools-based build system (contributed by Albin
Ahlbäck)

7 / 23

FFT multiplication

I GMP uses the Schönhage-Strassen algorithm (SSA),
involving a mod 2N + 1 FFT, to multiply large integers.

I FLINT 2 has its own multithreaded SSA. This is also used
for multiplying polynomials in Z[x] with large coe�cients
(Kronecker substitution is used for small coe�cients).

I However, on modern (last 15+ years) hardware with fast
single-word multiplication, small-prime FFTs (using Z/pZ
arithmetic with word-size p) outperform SSA.

Used, for example, in Victor Shoup’s NTL for polynomial
multiplication in some ranges.

8 / 23

Daniel Schultz’s new FFT in FLINT

I Uses 50-bit moduli, exactly representable in a double, with
precomputed inverses ⇡ 1/p

I Double-word operations based on fused multiply-adds
I Uses SIMD vectors (currently AVX2 or NEON)
I Multithreaded
I Various data is cached to speed up multiple multiplications
I Integer multiplication uses up to 8 primes, with specialized

code for reduction and Chinese remaindering
I Currently requires building FLINT with –-enable-avx2 or

similar (this may change)

9 / 23

Things that benefit from the new FFT

I Arithmetic with integers, integers mod N,
arbitrary-precision floats, etc. (>10,000 digits)

I Division, radix conversion, transcendental functions
I Polynomial arithmetic
I Anything else that FLINT reduces to big-integer or

univariate polynomial multiplication internally

Some exceptions:
I Middle product (for optimal division code)
I Integer GCD, XGCD (these still use GMP)

10 / 23

Speedup for integer multiplication

Speedup of flint_mpn_mul vs mpn_mul (or fmpz_mul vs mpz_mul)
Machine: 8-core AMD Ryzen 7 PRO 5850U CPU (Zen 3)

11 / 23

Example: computing 100 million digits of ⇡

gmp-chudnovsky.c 62.1 s
MPFR 172.9 s
FLINT 2 69.3 s
FLINT 3 31.6 s
y-cruncher 18.3 s
FLINT 2 (8 threads) 22.4 s
FLINT 3 (8 threads) 9.3 s
y-cruncher (8 threads) 4.5 s

Remarks:
I y-cruncher (closed source) is the world champion ⇡ program
I FLINT uses no special tricks for ⇡; other transcendental

functions (e.g. modular forms) get similar speedups

12 / 23

Speedup for multiplication in Z[x]
Single-threaded speedup, FLINT 3 vs FLINT 2

length n
bits 16 64 256 1024 4096 16384 65536 262144 1048576

16 1.00 1.01 3.28 4.23 6.31 8.61 6.00 3.12 3.39
64 0.95 0.97 2.80 3.92 3.98 3.54 4.13 5.39 5.46
256 1.01 1.15 2.00 2.43 2.44 2.65 3.53 3.10 2.96
1024 0.97 1.01 1.20 1.47 2.30 3.97 3.28 3.08 3.27
4096 2.41 2.31 2.24 2.01 2.24 2.80 3.18 3.26
16384 2.30 2.18 1.95 1.95 1.75 1.86 3.05
65536 2.41 2.17 2.06 1.81 1.71 1.73
262144 2.46 2.33 2.03 1.95 1.97
1048576 2.83 2.45 2.27 2.28

Observation: Kronecker substitution now (nearly) always beats
Schönhage-Strassen

13 / 23

Speedup for multiplication in Z[x]

Multi-threaded (8 threads)

length n
bits 16 64 256 1024 4096 16384 65536 262144 1048576

16 1.07 1.08 3.54 4.49 6.65 11.58 5.09 1.69 2.79
64 1.05 1.06 2.98 5.37 9.52 5.82 2.93 3.14 3.70
256 1.07 1.14 2.95 5.57 4.65 2.88 2.50 2.03 1.99
1024 1.04 1.03 2.62 3.09 2.16 2.68 2.17 2.19 2.20
4096 4.23 5.90 4.05 2.58 0.53 1.40 2.21 2.23
16384 10.23 13.07 4.47 1.56 0.99 1.02 1.02
65536 11.22 7.88 2.73 1.62 1.07 1.02
262144 7.46 4.78 2.49 1.62 1.02
1048576 6.27 5.23 2.90 1.97

14 / 23

Generic rings

FLINT is designed around the principle that each structure over
each base ring has its own C type:
I fmpz_poly for Z[x]
I fmpq_poly for Q[x]
I arb_poly for R[x]
I . . .

This has pros (type safety in C, performance) and
cons (code duplication, bloat, API inconsistencies).

Also, generic programming on top of FLINT requires working
with a wrapper (in Python, Julia, ...).

15 / 23

Generic rings: the gr module in FLINT 3

A ring R is represented by a context object which stores:
I sizeof(element)

I Pointer to method table: init, set, add, mul, equal, ...
I Ring parameters (optional): precision, modulus, matrix

size, precomputed inverse, monomial ordering, evaluation
settings, ...

Elements x 2 R are passed around as pointers.

Vectors of elements are packed together without overhead and
can be allocated e�ciently on the heap or the stack (compatible
with preexisting FLINT code):

| element | element | element | ...

16 / 23

Generic rings - example
#include "gr.h"

int main() {

int status; // error code

gr_ctx_t ZZ, ZZx; // context objects

gr_ptr a; // an element

gr_ctx_init_fmpz(ZZ); // ring of fmpz_t integers

gr_ctx_init_gr_poly(ZZx, ZZ); // Z[x]

GR_TMP_INIT(a, ZZx); // create one element on the stack

status = gr_gen(a, ZZx); // a = x

status |= gr_add_ui(a, a, 1, ZZx); // a += 1

status |= gr_pow_ui(a, a, 10, ZZx); // a = a ^ 10

status |= gr_println(a, ZZx);

GR_TMP_CLEAR(a, ZZx);

gr_ctx_clear(ZZx);

gr_ctx_clear(ZZ);

return status;

}
17 / 23

Generic rings - Python demo

>>> from flint_ctypes import *

>>> R = PowerSeriesRing(QQbar, prec=3)

>>> x = R.gen()

>>> (2-x).sqrt()

(Root a = 1.41421 of a^2-2)

+ (Root a = -0.353553 of 8*a^2-1)*x

+ (Root a = -0.0441942 of 512*a^2-1)*x^2

+ O(x^3)

>>> M = Mat(R, 2)

>>> M

Ring of 2 x 2 matrices over Power series over Complex

algebraic numbers (qqbar) with precision O(x^3)

>>> M([[(2-x).sqrt(), x], [2, (2-x).sqrt()]]).det()

2 - 3*x + O(x^3)

18 / 23

Generic rings - Python demo

>>> R = PowerSeriesRing(CC, prec=3)

>>> x = R.gen()

>>> (2-x).sqrt()

[1.414213562373095 +/- 2.99e-16]

+ [-0.353553390593274 +/- 5.31e-16]*x

+ [-0.044194173824159 +/- 3.48e-16]*x^2 + O(x^3)

>>> M = Mat(R, 2)

>>> M

Ring of 2 x 2 matrices over Power series over Complex

numbers (acb, prec = 53) with precision O(x^3)

>>> M([[(2-x).sqrt(), x], [2, (2-x).sqrt()]]).det()

[2.00000000000000 +/- 1.30e-15]

+ [-3.00000000000000 +/- 1.44e-15]*x

+ [+/- 6.53e-16]*x^2 + O(x^3)

19 / 23

Why do generics in C in FLINT?
I Sage and Oscar are nice, but only convenient to use from

their respective languages (Python/Julia), and there are
performance and correctness issues.

I Economical way to implement long-requested features
(multivariate polynomials over R, power series types,
sparse matrices, ...) without adding 100s of new types

I Chance to reduce bloat in FLINT (copy-pasted algorithms,
plus multiple previous partial generics solutions) - 30,000
LOC already removed

I Allows adding specializations for performance (fixed-size
finite fields, floats, etc.)

I Simplify interfacing with FLINT - can wrap generics once
instead of wrapping each individual FLINT type (with subtle
API di�erences between types)

20 / 23

Generic rings - current features
Wrapped base rings:
I Most familiar FLINT types (including Arb, Calcium, Antic)

Generic structures:
I Dense vectors, matrices
I Dense univariate polynomials, power series
I Sparse multivariate polynomials (very rudimentary)

Generic algorithms:
I Basecase and asymptotically fast polynomial operations,

standard linear algebra, special functions, ...

Planned:
I Generic fraction fields, sparse matrices, etc.
I Fixed-size finite fields, floats, etc.

21 / 23

Correctness & error handling

Methods perform error handling uniformly, returning flags:
I DOMAIN (e.g. divide by zero)
I UNABLE (e.g. overflow, not implemented, undecidable)

Predicates return TRUE, FALSE or UNKNOWN.

Rings have enclosure semantics for inexact elements. For
example, we distinguish between two kinds of power series:
I 2 � 3x + O(x3) is an enclosure in R[[x]]
I 2 � 3x (mod x3) is an exact element in R[[x]]/hx3i

The Arb-based real field R is actually a field: it does not contain
the element +1 (but admits the enclosure (�1,+1)).

22 / 23

Some current weaknesses of FLINT

I Lacks a lot of the higher level functionality found in Pari/GP,
Magma, etc. (generic rings may or may not help with this)

I Many algorithms implemented years ago are now out of
date

I Linear algebra can be hit-or-miss (no sparse linear algebra;
some functions are poorly optimized)

I Limited SIMD use; no GPU acceleration; no distributed
parallel computation

I Lacks tuning for specific architectures

I Sometimes memory-hungry (overallocation, caching); no
support for out-of-RAM computation

23 / 23

