Number Theory in Oscar:
 From Class Groups to Class Fields and Beyond

Claus Fieker

June 28, 2023

Preliminaries

- Mostly in Hecke
https://github.com/thofma/Hecke.jl
■ $>200 k$ loc, in Julia
- main maintainer: Tommy Hofmann
- many contributers
- much broader scope than presented

Why Julia?

- Interactive
- As fast as c
- Solves 2-language problem
- Not maintained by us
- Modern

■ Interoperates well with c

Basics

Definition

A number field is a finite extension of \mathbb{Q}

- no link to \mathbb{C}
- based in vector space structure
- inefficient in general

Primitive Element

Theorem

For a number field K, there is some $\alpha \in K$ s.th. $K=\mathbb{Q}[\alpha]$. Furthermore, for the minimal polynomial $f \in \mathbb{Q}[t]$ of α we have $K \equiv \mathbb{Q}[t] / f$.

- Sonn-Zassenhaus: given a basis, some α can be found
- mostly, we start with f, typically monic, integral, irreducible
- interesting fields are often differently given

Example

Example

julia> using Oscar

...combining (and extending) ANTIC, GAP, Polymake and Singular Version 0.12.2-DEV \qquad
... which comes with absolutely no warranty whatsoever
Tvpe: '?Oscar' for more information

Example

```
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^3-2)
(Number field of degree 3 over QQ, _a)
julia> a^3
2
julia> basis(K)
3-element Vector{nf_elem}:
    1
    _a
    _a^2
```


More Constructions

Number Fields can be constructed in many other ways:

- special constructs (qudratic fields, cyclotomics)

■ splitting fields, normal closures
■ subfields

- extensions of number fields (by polynomials)
- non-simple fields
- composita

Examples

```
julia> Ky, y = K["y"];
julia> L, b = number_field(y`3-a)
(Relative number field of degree 3 over number field, _$)
julia> b^3
_a
julia> b^9
2
julia> k, c = number_field([x^2-2, x^2-3, x^2-5])
(Non-simple number field of degree 8 over QQ, NfAbsNSElem[_$1, _$2, _$3])
julia> c[2]^2
3
```


Primitive Element - 2

The existence theorem is effective:

```
julia> absolute_simple_field(k)
julia> ka, mp = absolute_simple_field(k);
julia> ka
Number field with defining polynomial x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 5
        over rational field
julia> mp(gen(ka))
_$1 + _$2 + _$3
julia> preimage(mp, c[2])
-1//96*_a^7 + 37//96*_a^5 - 61//24*_a^3 + 15//4*_a
```


Basics

For arithmetic purposes, one wants to work with rings, in particular the ring of integers, maximal order:

Definition

$\alpha \in K$ is called integral (algebraic integer) iff the minimal polynomial is monic and integral. The set of all algebraic integers is called the integral closure of \mathbb{Z} in K or maximal order \mathbb{Z}_{K}.

Actually:

- \mathbb{Z}_{K} is a ring

■ \mathbb{Z}_{K} is a free \mathbb{Z}-module of rank $n=K: \mathbb{Q}$
■ \mathbb{Z}_{K} can be computed...

Examples

julia> ZK = maximal_order(K)
Maximal order of Number field of degree 3 over QQ
with basis nf_elem[1, _a, _a^2]
julia> maximal_order(quadratic_field(5)[1])
Maximal order of Real quadratic field defined by x^2 - 5
with basis nf_elem[1, 1//2*sqrt(5) + 1//2]

Class Group

- The maximal order is a Dedekind domain, hence the ideals form a group. The quotient by principal ideals is finite, the class group.
■ The class group is trivial iff the maximal order is a PID.
- The class group controls the multiplicative structure of a number field.
- The implementation in Oscar is competitive and was involved in world record computations.

Examples

```
julia> k, a = quadratic_field(-1009);
julia> c, mc = class_group(k)
(GrpAb: Z/20, ClassGroup map of
Set of ideals of O_k)
julia> mc(c[1])
<11, 117*sqrt(-1009) + 75>
Norm: 11
Minimum: 11
two normal wrt: 11
```


Examples

```
julia> ans^10
<25937424601, 3178139197528759054702872282444000*sqrt(-1009) - 49351124827
Norm: 25937424601
Minimum: 25937424601
two normal wrt: 11
julia> I = mc(10*c[1])
<2, 3*sqrt(-1009) + 3>
Norm: 2
Minimum: 2
two normal wrt: 2
```


Examples

```
julia> is_principal(I)
(false, 1)
julia> is_principal(I^2)
(true, -2)
```


Examples

```
julia> factor(3*5*7*order(I))
Dict{NfOrdIdl, Int64} with 4 entries:
    <7, -1008> => 1
    <3, -1005> => 1
    <5, sqrt(-1009) + 9> => 1
    <5, sqrt(-1009) + 1> => 1
```

julia> [preimage(mc, x) for $x=$ keys(ans)]
4-element Vector\{GrpAbFinGenElem\}:
Element of c with components [0]
Element of c with components [0]
Element of c with components [4]
Element of c with components 「16〕

Basics

- A Class Field is an extension with abelian automorphism group
- Class Fields are parametrized by generalized class groups
- Many properties can be read off the parameters, other not (yet)
- Links to analytic theory
- "Easiest" example: the Hilbert Class Field...
- Maximal abelian unramified extension
- Automorphism group isomorphic to class group

■ Every ideal of base becomes principal

Examples

```
julia> k, a = wildanger_field(3, 13);
julia> k
Number field with defining polynomial x^3-13*x^2 + 13*x - 13
    over rational field
julia> H = hilbert_class_field(k)
Class field defined mod (<1, 1>, InfPlc\{AnticNumberField, Hecke.NumFieldEm
    of structure Abelian group with structure: Z/9
```


Examples

julia> galois_group(H)
$\operatorname{Group}([(1,2,3,4,5,6,7,8,9)])$
julia> discriminant(H)
<1, 1>
Norm: 1
Minimum: 1
principal generator 1
two normal wrt: 1

Examples

julia> K = number_field(H)
Non-simple number field with defining polynomials
$\left[x \wedge 9+\left(-54 * _\$ \wedge 2+648 * _\$-567\right) * x^{\wedge} 7+\left(27 * _\$ \wedge 2-216 * _\$-3780\right) * x \wedge 6+(-2\right.$ over number field with defining polynomial x^3 - 13*x^2 + 13*x - 13 over rational field
julia> Ka, mp = absolute_simple_field(K);
julia> class_group(Ka)
(GrpAb: Z/1, ClassGroup map of
Set of ideals of O_Ka)

Field Factory

Theorem (Shafarevich)
Every solvable group occurs as a Galois group over \mathbb{Q}.

- Every solvable group is a chain of abelian (cyclic) groups
- Every solvable field is a tower of class fields
- Most towers yield the wrong group
- Sircana automated this completely

Examples

```
julia> small_group(8, 3)
<pc group of size 8 with 3 generators>
julia> describe(ans)
"D8"
julia> fields(8, 3, ZZ(10)^7)
7-element Vector{Hecke.FieldsTower}:
    Field context for the number field defined by x^8 + 6*x^4 + 1
    Field context for the number field defined by x^8 - 2*x^7 + 7*x^6 - 14*x^
```


Galois Groups

Carefully distinguish:

Galois Group vs. Automorphism Group

Fact (Automorphism Group)

The group of actual endomorphisms of the field
Fact (Galois Group)
For roots $\alpha_{1}, \ldots, \alpha_{n}$, the group of legal permutations of those roots.

Examples

```
julia> k, a = cyclotomiic_field(5);
julia> automorphism_group(PermGroup, k)
(Group([ (1,2,3,4) ]), Composite map consisting of the following
Group([ (1,2,3,4) ]) -> Generic group of order 4 with multiplication table
then
Generic group of order 4 with multiplication table -> Set of automorphisms
)
julia> galois_group(k)
(Group([ (1,4,2,3), (1,2)(3,4) ]), Galois Context for x^4 + x^3 + x^2 + x
```


Examples

```
julia> k, a = wildanger_field(3, 13);
julia> automorphism_group(PermGroup, k)
(Group(()), Composite map consisting of the following
Group(()) -> Generic group of order 1 with multiplication table
then
Generic group of order 1 with multiplication table -> Set of automorphisms
)
julia> galois_group(k)
(Sym( [ 1 .. 3 ] ), Galois Context for x^3 - 13*x^2 + 13*x - 13 and prime
```


Examples

```
julia> g, s = galois_group(k);
julia> roots(s, 5)
3-element Vector\{qadic\}:
    \(4 * 7^{\wedge} 0+6 * 7^{\wedge} 1+2 * 7^{\wedge} 2+0\left(7^{\wedge} 3\right)\)
    ( \(\left.5 * 7^{\wedge} 0+4 * 7^{\wedge} 2+0\left(7^{\wedge} 3\right)\right) * \mathrm{a}+2 * 7^{\wedge} 0+3 * 7^{\wedge} 1+0\left(7^{\wedge} 3\right)\)
    \(\left(2 * 7^{\wedge} 0+6 * 7^{\wedge} 1+2 * 7^{\wedge} 2+0\left(7^{\wedge} 3\right)\right) * a+6 * 7^{\wedge} 1+3 * 7^{\wedge} 2+0\left(7^{\wedge} 3\right)\)
```


Examples

```
julia> n = normal_subgroups (g)
3-element Vector\{PermGroup\}:
    \(\operatorname{Sym}([1\).. 3 ] )
    Alt ( [ 1 .. 3 ] )
    Group(())
```

julia> fixed_field(s, n[2])
Number field with defining polynomial x^2 + 59488
over rational field
julia> fixed_field(s, n[3])
Number field with defining polynomial x^6 - 26*x^5 + 178659*x^4 - 3093740*
over rational field

Solvability

Classically solvabilty is linked to explicit ways to write the roots of a polynomial in terms of (nested) radicals.
This is possible iff the associated Galois group is solvable - and the usual proof is constructive...

Examples

```
julia> solve(x^3+x+1)
(Relative number field of degree 3 over relative number field, Any[((1//9*
julia> ans[1]
Relative number field ... x^3 + (3*z_3 + 3//2)*a2 + 27//2
    over relative number field ... x^2 + 31
        over number field ... x^2 + x + 1
        over rational field
```


Examples

```
julia> h = Hecke.fields(8, 3, ZZ(10)^7);
julia> solve(h[1])
julia> ans[1]
Relative number field ... x^2 + 1//2
    over relative number field ... x^2 + a1 - 2
        over number field ... x^2 + 4
            over rational field
```

(Relative number field of degree 2 over relative number field, Any[a3 + 1/,

Representations

Building on top of the Gap character theory and the class field theory we can do interesting computations...
Let $G=24 T 201$ of order 240 . The 9 -th character if G has Schur index 2, character field \mathbb{Q}. The representation, in Gap, is constructed over $\mathbb{Q}\left(\zeta_{5}\right)$. The representation should live over a quadratic field, however, not over $\mathbb{Q}[\sqrt{5}]$.

Example

```
julia> G = transitive_group \((24,201)\);
julia> order (G)
240
julia> T = character_table(G) [9];
julia> R = gmodule( T )
G-module for t24n201 acting on Vector space of dimension 6
over abelian closure of \(Q\)
julia> R = gmodule(CyclotomicField, R)
G-module for t24n201 acting on Vector space of dimension 6
over cyclotomic field of order 5
```


Example

julia> schur_index(T)
2
julia> character_field(T)
(Cyclotomic field of order 1, Map from
Cyclotomic field of order 1 to Abelian closure of Q defined by a julia-fun

Example

julia> gmodule_minimal_field(R)
G-module for t24n201 acting on Vector space of dimension 6 over number field of degree 4 over QQ
julia> B, mB = relative_brauer_group(base_ring(R), character_field(R))
(Relative Brauer group for Cyclotomic field of order 5 over Number field 0 , Map from
Relative Brauer group for Cyclotomic field of order 5 over Number field of to AllCoChains\{2, PermGroupElem, MultGrpElem\{nf_elem\}\}() defined by a jul

Example

```
julia> B(R)
Dict\{Union\{NumFieldOrdIdl, Hecke.NumFieldEmb\}, Hecke.QmodnZElem\}(
<2, 2>
two normal wrt: 2 => 1//2 + Z,
Complex embedding corresponding ... => 1//2 + Z)
```


Example

```
julia> grunwald_wang(Dict(2*ZZ => 2), Dict(complex_embeddings(QQ)[1] => 2)
Class field defined mod (<8, 8>, InfPlc{AnticNumberField, Hecke.NumFieldEm
julia> absolute_simple_field(number_field(ans))
(Number field of degree 2 over QQ, Map with following data
Domain:
=======
Number field of degree 2 over QQ
Codomain:
=========
```

Non-simple number field of degree 2 over number field ...

Example

julia＞compositum（base＿ring（R），ans［1］）
（Number field of degree 8 over QQ，Map with following data
Domain：
＝＝＝＝＝＝＝
Cyclotomic field of order 5
Codomain：
＝＝＝＝＝＝＝＝＝
Number field of degree 8 over QQ，Map with following data Domain：
＝＝＝＝＝＝＝
Number field of degree 2 over $Q Q$
Codomain：
＝ニニニニ＝ニ＝

Example

```
julia> gmodule_over(ans[3], gmodule(ans[1], R))
G-module for t24n201 acting on Vector space of dimension 6
over number field of degree 2 over QQ
julia> base_ring(ans)
Number field with defining polynomial x^2 + 2
    over rational field
```


Galois Cohomology

Theorem (Shafarevich)
Let K / k be abelian and k / \mathbb{Q} normal, then canonically

$$
H^{2}\left(\operatorname{Aut}(k / \mathbb{Q}), C_{k}\right)=\langle\delta\rangle
$$

is cyclic of order $n=k: \mathbb{Q}$. Furthermore

$$
1 \rightarrow \operatorname{Aut}(K / k) \rightarrow \operatorname{Aut}(K / \mathbb{Q}) \rightarrow \operatorname{Aut}(k / \mathbb{Q}) \rightarrow 1
$$

is exact, and

$$
H^{2}(\operatorname{Aut}(k / \mathbb{Q}), \operatorname{Aut}(K / k)) \ni \operatorname{Aut}(K / \mathbb{Q})=\rho(\delta)
$$

for the canonical projection $\rho: C_{k} \rightarrow \operatorname{Aut}(K / k)$

Chinburg

C_{k}, the idel class group, is neither finite, nor finitely presented nor are its elements.
Theorem (Chinburg)
There exists a finitely presented module that is cohomologically equivalent to the idel class group C_{k}.

- Debeerst (PhD with Bley) made it algorithmic
- Aslam improved the local part
- Implemented in Oscar
- Can compute the local fundamental class
- Can compute global class in many cases

Example

```
julia> k, a = quadratic_field(2);
julia> A = abelian_extensions(k, [2], ZZ(10)^4,
    signatures = [(4,0)]);
julia> a = A[findall(is_normal, A)];
julia> [describe(galois_group(x, QQ)[1]) for x = a]
3-element Vector{String}:
        "C2 x C2"
        "C2 x C2"
        "C4"
julia> [describe(galois_group(x, QQ)[1]) for x = A]
15-element Vector{String}:
    "C2 x C2"
    "D8"
```

