

Number Theory in Oscar: From Class Groups to Class Fields and Beyond

Claus Fieker

June 28, 2023

Claus Fieker

Number Theory in Oscar: From Class Groups to Class Fields and Beyond

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 ● のへで

Class Fields

Preliminaries

- Mostly in Hecke https://github.com/thofma/Hecke.jl
- $\blacksquare > 200k$ loc, in Julia
- main maintainer: Tommy Hofmann
- many contributers
- much broader scope than presented

Number Fields	Class Group	Class Fields	Beyond
00000000		000000	000000000000000000000000000000000000

Why Julia?

Interactive

As fast as c

- Solves 2-language problem
- Not maintained by us

Modern

Interoperates well with c

Number Fields	Class Group 0000000	Class Fields 000000	Beyond 000000000000000000000000000000000000
Basics			
Busies			

Definition

A number field is a finite extension of ${\mathbb Q}$

- \blacksquare no link to $\mathbb C$
- based in vector space structure
- inefficient in general

Class Fields

Primitive Element

Theorem

For a number field K, there is some $\alpha \in K$ s.th. $K = \mathbb{Q}[\alpha]$. Furthermore, for the minimal polynomial $f \in \mathbb{Q}[t]$ of α we have $K \equiv \mathbb{Q}[t]/f$.

- Sonn-Zassenhaus: given a basis, some α can be found
- mostly, we start with f, typically monic, integral, irreducible
- interesting fields are often differently given

Class Fields

ヘロン 人間 とくほとく ほとう

I nar

Example

```
_______ Documentation: https://docs.julialang.org
(_) | (_) (_) |
______ I _____ Type "?" for help, "]?" for Pkg help.
| | | | | | / ___ I |
| | | | | | / ___ I |
| Version 1.8.5 (2023-01-08)
_/ |\____ I ___ I | Official https://julialang.org/ release
__/ |
```

julia>

Claus Fieker

Number Fields	Class Group	Class Fields	Beyond
00000●000	0000000	000000	000000000000000000000000000000000000

...combining (and extending) ANTIC, GAP, Polymake and Singular Version 0.12.2-DEV ...

... which comes with absolutely no warranty whatsoever

Number Fields	Class Group	Class Fields	Beyond
000000●00		000000	000000000000000000000000000

```
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^3-2)
(Number field of degree 3 over QQ, _a)
julia> a^3
2
julia> basis(K)
3-element Vector{nf_elem}:
 1
 _a
 a^2
```

・ロト・日本・日本・日本・日本・日本

Claus Fieker

Claus Fieker

Class Fields

More Constructions

Number Fields can be constructed in many other ways:

- special constructs (qudratic fields, cyclotomics)
- splitting fields, normal closures
- subfields
- extensions of number fields (by polynomials)
- non-simple fields
- composita

Number Fields	Class Group	Class Fields	Beyond
00000000●	0000000	000000	000000000000000000000000000000000000

```
julia> Ky, y = K["y"];
julia> L, b = number_field(y^3-a)
(Relative number field of degree 3 over number field, _$)
julia> b^3
a
julia> b^9
2
julia> k, c = number_field([x^2-2, x^2-3, x^2-5])
(Non-simple number field of degree 8 over QQ, NfAbsNSElem[_$1, _$2, _$3])
julia> c[2]^2
3
```

Claus Fieker

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

Primitive Element - 2

The existence theorem is effective:

```
julia> absolute_simple_field(k)
julia> ka, mp = absolute_simple_field(k);
```

```
julia> ka
Number field with defining polynomial x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 5
over rational field
julia> mp(gen(ka))
_$1 + _$2 + _$3
julia> preimage(mp, c[2])
-1//96*_a^7 + 37//96*_a^5 - 61//24*_a^3 + 15//4*_a
```

Number Fields	Class Group	Class Fields	Beyond
000000000	•000000	000000	000000000000000000000000000000000000

Basics

For arithmetic purposes, one wants to work with rings, in particular the ring of integers, maximal order:

Definition

 $\alpha \in K$ is called integral (algebraic integer) iff the minimal polynomial is monic and integral. The set of all algebraic integers is called the integral closure of \mathbb{Z} in K or maximal order \mathbb{Z}_K .

Actually:

- \mathbb{Z}_K is a ring
- \mathbb{Z}_K is a free \mathbb{Z} -module of rank $n = K : \mathbb{Q}$
- \mathbb{Z}_K can be computed...

Claus Fieker

Number Fields

Class Group

Class Fields

Examples

```
julia> ZK = maximal_order(K)
Maximal order of Number field of degree 3 over QQ
with basis nf_elem[1, _a, _a<sup>2</sup>]
```

julia> maximal_order(quadratic_field(5)[1]) Maximal order of Real quadratic field defined by $x^2 - 5$ with basis nf_elem[1, 1//2*sqrt(5) + 1//2]

Class Group

- The maximal order is a Dedekind domain, hence the ideals form a group. The quotient by principal ideals is finite, the *class group*.
- The class group is trivial iff the maximal order is a PID.
- The class group controls the multiplicative structure of a number field.
- The implementation in Oscar is competitive and was involved in world record computations.

Number Fields	Class Group	Class Fields	Beyond
00000000	000●000	000000	000000000000000000000000000

```
julia> k, a = quadratic_field(-1009);
julia> c, mc = class_group(k)
(GrpAb: Z/20, ClassGroup map of
Set of ideals of O_k)
julia> mc(c[1])
<11, 117*sqrt(-1009) + 75>
Norm: 11
```

```
Minimum: 11
two normal wrt: 11
```

Number Fields	Class Group	Class Fields 000000	Beyond 000000000000000000000000000000000000

```
julia> ans^10
<25937424601, 3178139197528759054702872282444000*sqrt(-1009) - 49351124827</pre>
Norm: 25937424601
Minimum: 25937424601
two normal wrt: 11
julia> I = mc(10*c[1])
<2, 3*sqrt(-1009) + 3>
Norm: 2
Minimum: 2
```

```
two normal wrt: 2
```

Number Fields	Class Group	Class Fields	Beyond
00000000		000000	000000000000000000000000000000000000

```
julia> is_principal(I)
(false, 1)
```

```
julia> is_principal(I^2)
(true, -2)
```

Number Fields	Class Group	Class Fields	Beyond
00000000	000000●	000000	000000000000000000000000000000000000

Examples

```
julia> factor(3*5*7*order(I))
   Dict{NfOrdId1, Int64} with 4 entries:
     <7, -1008> => 1
     <3. -1005> => 1
     <5, sqrt(-1009) + 9> => 1
     <5, sqrt(-1009) + 1> => 1
   julia> [preimage(mc, x) for x = keys(ans)]
   4-element Vector{GrpAbFinGenElem}:
    Element of c with components [0]
    Element of c with components [0]
    Element of c with components [4]
    Element of c with components [16]
Claus Fieker
```

Number Fields	Class Group	Class Fields	Beyond
200000000	0000000	●00000	

Basics

- A Class Field is an extension with abelian automorphism group
- Class Fields are parametrized by generalized class groups
- Many properties can be read off the parameters, other not (yet)
- Links to analytic theory
- "Easiest" example: the Hilbert Class Field...
 - Maximal abelian unramified extension
 - Automorphism group isomorphic to class group
 - Every ideal of base becomes principal

Number Fields	Class Group	Class Fields	Beyond
000000000	0000000	○●○○○○	000000000000000000000000000000000000

```
julia> k, a = wildanger_field(3, 13);
julia> k
Number field with defining polynomial x^3 - 13*x^2 + 13*x - 13
over rational field
```

julia> H = hilbert_class_field(k)
Class field defined mod (<1, 1>, InfPlc{AnticNumberField, Hecke.NumFieldEm
 of structure Abelian group with structure: Z/9

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	00●000	000000000000000000000000000000000000

```
julia> galois_group(H)
Group([ (1,2,3,4,5,6,7,8,9) ])
julia> discriminant(H)
<1, 1>
Norm: 1
Minimum: 1
principal generator 1
two normal wrt: 1
```

Number Fields	Class Group	Class Fields	Beyond
00000000		000●00	000000000000000000000000000000000000

```
julia> K = number_field(H)
Non-simple number field with defining polynomials
[x^9 + (-54*_$^2 + 648*_$ - 567)*x^7 + (27*_$^2 - 216*_$ - 3780)*x^6 + (-2*
over number field with defining polynomial x^3 - 13*x^2 + 13*x - 13
over rational field
```

```
julia> Ka, mp = absolute_simple_field(K);
julia> class_group(Ka)
(GrpAb: Z/1, ClassGroup map of
Set of ideals of O_Ka)
```

Number Fields

Class Group

Class Fields 0000●0

Field Factory

Theorem (Shafarevich)

Every solvable group occurs as a Galois group over \mathbb{Q} .

- Every solvable group is a chain of abelian (cyclic) groups
- Every solvable field is a tower of class fields
- Most towers yield the wrong group
- Sircana automated this completely

Number Fields	Class Group	Class Fields	Beyond
000000000	0000000	00000●	000000000000000000000000000000000000

```
julia> small_group(8, 3)
<pc group of size 8 with 3 generators>
julia> describe(ans)
"80"
julia> fields(8, 3, ZZ(10)^7)
7-element Vector{Hecke.FieldsTower}:
Field context for the number field defined by x^{8} + 6*x^{4} + 1
Field context for the number field defined by x^8 - 2*x^7 + 7*x^6 - 14*x^7
 . . .
```

Claus Fieker

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	•000000000000000000000000000000000000

Galois Groups

Carefully distinguish:

Galois Group vs. Automorphism Group

Fact (Automorphism Group)

The group of actual endomorphisms of the field

Fact (Galois Group)

For roots $\alpha_1, \ldots, \alpha_n$, the group of legal permutations of those roots.

Claus Fieker

Number Theory in Oscar: From Class Groups to Class Fields and Beyond

・ロト・日本・日本・日本・日本・日本・日本

Number Fields	Class Group	Class Fields	Beyond
000000000		000000	0●00000000000000000000000000000000000

```
julia> k, a = cyclotomiic_field(5);
julia> automorphism_group(PermGroup, k)
(Group([ (1,2,3,4) ]), Composite map consisting of the following
Group([ (1,2,3,4) ]) -> Generic group of order 4 with multiplication table
then
Generic group of order 4 with multiplication table -> Set of automorphisms
)
```

```
julia> galois_group(k)
(Group([ (1,4,2,3), (1,2)(3,4) ]), Galois Context for x<sup>4</sup> + x<sup>3</sup> + x<sup>2</sup> + x
```

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	○0●○○○○○○○○○○○○○○○○

```
julia> k, a = wildanger_field(3, 13);
julia> automorphism_group(PermGroup, k)
(Group(()), Composite map consisting of the following
Group(()) -> Generic group of order 1 with multiplication table
then
Generic group of order 1 with multiplication table -> Set of automorphisms
)
```

```
julia> galois_group(k)
(Sym( [ 1 .. 3 ] ), Galois Context for x^3 - 13*x^2 + 13*x - 13 and prime
```

```
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで
```

Claus Fieker

Number Fields

Class Fields

Examples

```
julia> g, s = galois_group(k);
julia> roots(s, 5)
3-element Vector{qadic}:
  4*7^0 + 6*7^1 + 2*7^2 + 0(7^3)
  (5*7^0 + 4*7^2 + 0(7^3))*a + 2*7^0 + 3*7^1 + 0(7^3)
  (2*7^0 + 6*7^1 + 2*7^2 + 0(7^3))*a + 6*7^1 + 3*7^2 + 0(7^3)
```

・ロマ・前マ・前マ・日マ

Claus Fieker

Number Fields	Class Group	Class Fields	Beyond
000000000	0000000	000000	000000000000000000000000000000000000

```
julia> n = normal_subgroups(g)
   3-element Vector{PermGroup}:
    Sym([1..3])
    Alt([1..3])
    Group(())
   julia> fixed_field(s, n[2])
   Number field with defining polynomial x^2 + 59488
      over rational field
   julia> fixed_field(s, n[3])
   Number field with defining polynomial x<sup>6</sup> - 26*x<sup>5</sup> + 178659*x<sup>4</sup> - 3093740*;
                                                              over rational field
Claus Fieker
Number Theory in Oscar: From Class Groups to Class Fields and Beyond
```

Number Fields 000000000	Class Group 0000000	Class Fields 000000	Beyond 00000●00000000000000000
Solvability			

Classically solvability is linked to explicit ways to write the roots of a polynomial in terms of (nested) radicals. This is possible iff the associated Galois group is solvable - and the usual proof is constructive...

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

```
julia> solve(x^3+x+1)
(Relative number field of degree 3 over relative number field, Any[((1//9*)
```

```
julia> ans[1]
Relative number field ... x^3 + (3*z_3 + 3//2)*a2 + 27//2
over relative number field ... x^2 + 31
over number field ... x^2 + x + 1
over rational field
```

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

```
julia> h = Hecke.fields(8, 3, ZZ(10)^7);
julia> solve(h[1])
(Relative number field of degree 2 over relative number field, Any[a3 + 1/,
julia> ans[1]
Relative number field ... x<sup>2</sup> + 1//2
```

```
Relative number field ... x<sup>2</sup> + 1//2
over relative number field ... x<sup>2</sup> + a1 - 2
over number field ... x<sup>2</sup> + 4
over rational field
```

(ロ) (四) (三) (三) (三) (○) (○)

Class Fields

Representations

Building on top of the Gap character theory and the class field theory we can do interesting computations...

Let G = 24T201 of order 240. The 9-th character if G has Schur index 2, character field \mathbb{Q} . The representation, in Gap, is constructed over $\mathbb{Q}(\zeta_5)$.

The representation should live over a quadratic field, however, not over $\mathbb{Q}[\sqrt{5}]$.

Number Fields	Class Group	Class Fields	Beyond
000000000	0000000	000000	ooooooooooooooooooooooooooooooooooo

Example

```
julia> G = transitive_group(24, 201);
julia> order(G)
240
julia> T = character_table(G)[9];
julia> R = gmodule(T)
G-module for t24n201 acting on Vector space of dimension 6
over abelian closure of Q
julia> R = gmodule(CyclotomicField, R)
G-module for t24n201 acting on Vector space of dimension 6
over cvclotomic field of order 5
```

Number Fields	Class Group	Class Fields	Beyond
000000000	0000000	000000	○○○○○○○○○●○○○○○○○○
Example			

```
julia> schur_index(T)
2
```

```
julia> character_field(T)
(Cyclotomic field of order 1, Map from
Cyclotomic field of order 1 to Abelian closure of Q defined by a julia-fun
```

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

```
julia> gmodule_minimal_field(R)
G-module for t24n201 acting on Vector space of dimension 6
over number field of degree 4 over QQ
```

julia> B, mB = relative_brauer_group(base_ring(R), character_field(R))
(Relative Brauer group for Cyclotomic field of order 5 over Number field of
, Map from
Relative Brauer group for Cyclotomic field of order 5 over Number field of

to AllCoChains{2, PermGroupElem, MultGrpElem{nf_elem}}() defined by a jul

Number Fields	Class Group	Class Fields	Beyond
	0000000	000000	000000000000000000000000000000000000

julia> B(R) Dict{Union{NumFieldOrdIdl, Hecke.NumFieldEmb}, Hecke.QmodnZElem}(<2, 2> two normal wrt: 2 => 1//2 + Z, Complex embedding corresponding ... => 1//2 + Z)


```
julia> grunwald_wang(Dict(2*ZZ => 2), Dict(complex_embeddings(QQ)[1] => 2))
Class field defined mod (<8, 8>, InfPlc{AnticNumberField, Hecke.NumFieldEmbeddings)
```

```
julia> absolute_simple_field(number_field(ans))
(Number field of degree 2 over QQ, Map with following data
Domain:
```

```
======
```

```
Number field of degree 2 over QQ Codomain:
```

=========

```
Non-simple number field of degree 2 over number field ...
```

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

```
julia> compositum(base_ring(R), ans[1])
   (Number field of degree 8 over QQ, Map with following data
   Domain:
   _____
   Cyclotomic field of order 5
   Codomain:
   _____
   Number field of degree 8 over QQ, Map with following data
   Domain:
   _____
   Number field of degree 2 over QQ
   Codomain:
                                                    _____
Claus Fieker
```

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	000000000000000000000000000000000000

```
julia> gmodule_over(ans[3], gmodule(ans[1], R))
G-module for t24n201 acting on Vector space of dimension 6
over number field of degree 2 over QQ
```

```
julia> base_ring(ans)
Number field with defining polynomial x<sup>2</sup> + 2
over rational field
```


Class Group

Class Fields

Galois Cohomology

Theorem (Shafarevich)

Let K/k be abelian and k/\mathbb{Q} normal, then canonically

 $H^2(\operatorname{Aut}(k/\mathbb{Q}), C_k) = \langle \delta \rangle$

is cyclic of order $n = k : \mathbb{Q}$. Furthermore

$$1 \to \operatorname{Aut}(K/k) \to \operatorname{Aut}(K/\mathbb{Q}) \to \operatorname{Aut}(k/\mathbb{Q}) \to 1$$

is exact, and

$$H^{2}(\operatorname{Aut}(k/\mathbb{Q}), \operatorname{Aut}(K/k)) \ni \operatorname{Aut}(K/\mathbb{Q}) = \rho(\delta)$$

for the canonical projection $\rho: C_k \to Aut(K/k)$

Claus Fieker

Chinburg

 C_k , the idel class group, is neither finite, nor finitely presented nor are its elements.

Theorem (Chinburg)

There exists a finitely presented module that is cohomologically equivalent to the idel class group C_k .

- Debeerst (PhD with Bley) made it algorithmic
- Aslam improved the local part
- Implemented in Oscar
- Can compute the local fundamental class
- Can compute global class in many cases

Number Fields	Class Group	Class Fields	Beyond
00000000	0000000	000000	0000000000000000000000●

```
julia> k, a = quadratic_field(2);
   julia> A = abelian_extensions(k, [2], ZZ(10)^4,
                           signatures = [(4,0)];
   julia> a = A[findall(is_normal, A)];
   julia> [describe(galois_group(x, QQ)[1]) for x = a]
   3-element Vector{String}:
    "C2 x C2"
    "C2 \times C2"
    "C4"
   julia> [describe(galois_group(x, QQ)[1]) for x = A]
   15-element Vector{String}:
    "C2 \times C2"
                                                        "80"
Claus Fieker
```